基于多模态融合的城市道路场景视频描述模型研究
Multimodal fusion for video captioning on urban road scene
北京联合大学 a. 北京市信息服务工程重点实验室; b. 脑与认知智能北京实验室, 北京 100101
摘要
城市道路视频描述存在仅考虑视觉信息而忽视了同样重要的音频信息的问题,多模态融合算法是解决此问题的方案之一。针对现有基于Transformer的多模态融合算法都存在着模态之间融合性能低、计算复杂度高的问题,为了提高多模态信息之间的交互性,提出了一种新的基于Transformer的视频描述模型多模态注意力瓶颈视频描述(multimodal attention bottleneck for video captioning,MABVC)。首先使用预训练好的I3D和VGGish网络提取视频的视觉和音频特征并将提取好的特征输入到Transformer模型当中,然后解码器部分分别训练两个模态的信息再进行多模态的融合,最后将解码器输出的结果经过处理生成人们可以理解的文本描述。在通用数据集MSR-VTT、MSVD和自建数据集BUUISE上进行对比实验,通过评价指标对模型进行验证。实验结果表明,基于多模态注意力融合的视频描述模型在各个指标上都有明显提升。该模型在交通场景数据集上依旧能够取得良好的效果,在智能驾驶行业具有很大的应用前景。
基金项目
国家自然科学基金资助项目(62171042,62102033,61906017,61802019)
北京市重点科技项目(KZ202211417048)
协同创新中心资助项目(CYXC2203)
北京联合大学学术研究项目(BPHR2020DZ02,ZB10202003,ZK40202101,ZK120202104)
出版信息
DOI: 10.19734/j.issn.1001-3695.2022.06.0275
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第2期
所属栏目: 图形图像技术
出版页码: 607-611,640
文章编号: 1001-3695(2023)02-049-0607-05
发布历史
[2022-08-11] 优先出版
[2023-02-05] 印刷出版
引用本文
李铭兴, 徐成, 李学伟, 等. 基于多模态融合的城市道路场景视频描述模型研究 [J]. 计算机应用研究, 2023, 40 (2): 607-611,640. (Li Mingxing, Xu Cheng, Li Xuewei, et al. Multimodal fusion for video captioning on urban road scene [J]. Application Research of Computers, 2023, 40 (2): 607-611,640. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊