基于注意力和卷积特征重排的图像修复
Image restoration based on attention and convolution feature rearrangement
兰州交通大学 电子与信息工程学院, 兰州 730030
摘要
近年来,基于U-Net与GAN(生成对抗网络)的深度学习网络模型在图像修复领域展现出了独特的优势,但是修复结果中仍然存在伪影、模糊、纹理细节退化、对于大面积破损难以修复、修复后的孔洞与背景图像不相容等现象。为了解决现有模型对大面积破损图像修复不友好以及修复后的图像存在退化现象等问题,通过对现有方法进行研究,改进了Shift-UNet(移位网络)模型:在U-Net与GAN的基础上,在每一层编码器和解码器之间增加了改进之后的注意力机制Attention-UNet并融入Shift-UNet,形成Attention-Shift-UNet;通过研究,将原来下采样部分的激活函数由Leaky_ReLU改为了SiLU函数。改进模型不仅在64×64的中心遮罩上取得了较好的效果,还实现了随机遮罩,遮罩面积由20%增加到80%。通过实验结果证明,该模型的修复效果更优,特别是针对大面积破损图像的修复。在CelebA、ParisArchitecture以及Paris Streetview数据集上经过测试,各评价指标都有明显的提高,其中结构相似性(SSIM)由原来的0.944 5提高到0.947 1,峰值信噪比(PSNR)由原来的27.992 7提高到28.553 6,L2损失由原来的0.001 7降低到0.001 5。
基金项目
国家自然科学基金资助项目(61966022)
甘肃省自然科学基金资助项目(21JR7RA300)
甘肃省敦煌文物保护研究中心开放课题资助项目(GDW2021YB15)
出版信息
DOI: 10.19734/j.issn.1001-3695.2022.06.0273
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第2期
所属栏目: 图形图像技术
出版页码: 617-622
文章编号: 1001-3695(2023)02-051-0617-06
发布历史
[2022-08-11] 优先出版
[2023-02-05] 印刷出版
引用本文
邬开俊, 单宏全, 梅源, 等. 基于注意力和卷积特征重排的图像修复 [J]. 计算机应用研究, 2023, 40 (2): 617-622. (Wu Kaijun, Shan Hongquan, Mei Yuan, et al. Image restoration based on attention and convolution feature rearrangement [J]. Application Research of Computers, 2023, 40 (2): 617-622. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊