基于多粒度粗糙集的聚类融合方法
Clustering ensemble algorithm based on multi-granulation rough set
1. 闽南师范大学 数学与统计学院, 福建 漳州 363000
2. 福建省粒计算重点实验室, 福建 漳州 363000
摘要
现有的聚类融合算法从聚类成员的角度出发,若使用全部聚类成员则融合结果受劣质成员影响,对聚类成员进行选择再进行融合则选择的策略存在主观性。为在一定程度上避免这两种局限性,可以从元素的角度出发,提出一种新的聚类融合方法。通过多粒度决策不一致粗糙集来选择一部分类别确定的元素,再利用这部分元素进行聚类融合生成新的划分;多粒度决策不一致粗糙集模型能够刻画多粒度决策过程中属性一致而决策不一致的现象,提出了一种基于多粒度决策不一致的粗糙集模型,并给出了一种聚类融合方法。具体做法是:首先在数据集上多次使用K-means聚类算法,生成论域上的多个粒结构;其次对所有粒结构两两之间求粒间包含度,建立包含度矩阵,对矩阵使用Otsu算法计算阈值,得出多组满足阈值条件的信息粒,求解多粒度决策不一致下近似和上近似;最后分别处理下近似与边界域中元素的类别,从而获得一个经过融合的聚类划分。实验结果表明,该方法能够有效改善聚类的结果,具有较高的时间效率,且算法具有较好的鲁棒性。
基金项目
福建省自然科学基金资助项目(2016J01315,2017J01507)
国家自然科学基金资助项目(61379021,11871259)
国家青年科学基金资助项目(61603173)
浙江省海洋大数据挖掘与应用重点实验室开放课题(OBDMA201603)
2017年福建省中青年教师教育科研项目(JAT170340)
福建省数学类研究生教育创新基地资助项目(1013-313009)
出版信息
DOI: 10.19734/j.issn.1001-3695.2018.04.0217
出版期卷: 《计算机应用研究》 印刷出版, 2019年第36卷 第10期
所属栏目: 算法研究探讨
出版页码: 2943-2947
文章编号: 1001-3695(2019)10-013-2943-05
发布历史
[2019-10-05] 印刷出版
引用本文
于佩秋, 李进金, 林国平. 基于多粒度粗糙集的聚类融合方法 [J]. 计算机应用研究, 2019, 36 (10): 2943-2947. (Yu Peiqiu, Li Jinjin, Lin Guoping. Clustering ensemble algorithm based on multi-granulation rough set [J]. Application Research of Computers, 2019, 36 (10): 2943-2947. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊