基于CNN-LSTM的QAR数据特征提取与预测
Feature extraction and prediction of QAR data based on CNN-LSTM
中国民航大学 a. 适航学院; b. 电子信息与自动化学院; c. 工程技术训练中心, 天津 300300
摘要
针对传统数据驱动的故障诊断方法难以从QAR数据中提取有效特征的问题,提出一种融合卷积神经网络(convolutional neural network,CNN)与长短时记忆网络(long short-term memory,LSTM)的双通道融合模型CNN-LSTM。CNN与LSTM分别作为两个通道,通过注意力机制(attention)融合,从而使模型能同时表达数据在空间维度和时间维度上的特征,并以时间序列预测的方式验证融合模型特征提取的有效性。实验结果表明,双通道融合模型与单一的CNN、LSTM相比,能够更有效地提取数据特征,模型单步预测与多步预测误差平均降低35.3%,为基于QAR数据的故障诊断提供一种新的研究思路。
基金项目
国家自然基金民航联合研究基金重点支持项目(U1533201)
中央高校基本科研业务费专项资助项目(3122016D006)
出版信息
DOI: 10.19734/j.issn.1001-3695.2018.04.0214
出版期卷: 《计算机应用研究》 印刷出版, 2019年第36卷 第10期
所属栏目: 算法研究探讨
出版页码: 2958-2961
文章编号: 1001-3695(2019)10-017-2958-04
发布历史
[2019-10-05] 印刷出版
引用本文
张鹏, 杨涛, 刘亚楠, 等. 基于CNN-LSTM的QAR数据特征提取与预测 [J]. 计算机应用研究, 2019, 36 (10): 2958-2961. (Zhang Peng, Yang Tao, Liu Yanan, et al. Feature extraction and prediction of QAR data based on CNN-LSTM [J]. Application Research of Computers, 2019, 36 (10): 2958-2961. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊