《计算机应用研究》|Application Research of Computers

改进粒子群算法在雷达网优化部署中的应用

Application of improved particle swarm optimization in radar network deployment

免费全文下载 (已被下载 次)  
获取PDF全文
作者 杨翠蓉,王明哲,龚浩华,倪枫
机构 华中科技大学 控制科学与工程系,武汉 430074
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2010)09-3268-04
DOI 10.3969/j.issn.1001-3695.2010.09.017
摘要 针对粒子群算法整体上容易陷入局部最优的缺陷,将鱼群算法中的视距、拥挤度引入标准粒子群算法,提出一种改进的粒子群算法,有效提高了粒子群算法的全局收敛性。通过基准函数Sphere、Griewank、Ackley和Shekel’s Foxholes的仿真,验证了改进算法的全局收敛能力。最后,以福建地形为背景,应用改进的粒子群算法完成雷达组网优化部署,进一步验证了改进粒子群算法的有效性。仿真和应用的结果表明,改进后的粒子群算法对于多峰值函数的寻优性能有明显提高。
关键词 粒子群优化;鱼群算法;视距;拥挤度;改进算法;雷达网
基金项目 国家自然科学基金资助项目(60874068)
本文URL http://www.arocmag.com/article/1001-3695(2010)09-3268-04.html
英文标题 Application of improved particle swarm optimization in radar network deployment
作者英文名 YANG Cui-rong, WANG Ming-zhe, GONG Hao-hua, NI Feng
机构英文名 Dept. of Control Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 , China
英文摘要 To overcome the drawbacks of sub-optimization involved in standard particle swarm optimization, proposed the improved particle swarm optimization (FPSO) algorithm by importing visual distance and congestion degree factor of artificial fish-swarm algorithm. The new algorithm enhanced the global search ability of the PSO validated by the four benchmark functions, Sphere, Griewank, Ackley and Shekel’s Foxholes. Considering the Fujian province terrain, used the FPSO to optimize the deployment of the radar network. The completion of the deployment optimization further validated the effectiveness of the FPSO. The results of the experiment indicate that the FPSO improves the optimization performance significantly for multi-peak function.
英文关键词 particle swarm optimization(PSO); artificial fish-swarm algorithm; visual distance; congestion degree; improved algorithm; radar network
参考文献 查看稿件参考文献
 
收稿日期
修回日期
页码 3268-3271
中图分类号
文献标志码 A