《计算机应用研究》|Application Research of Computers

基于用户空间位置评分云模型的Web服务协同过滤推荐算法

Collaborative filtering recommendation algorithm for Web services based on user-space location score cloud model

免费全文下载 (已被下载 次)  
获取PDF全文
作者 王瑞祥,魏乐,段燕飞,咬登国,张航
机构 1.成都信息工程大学 a.软件工程学院;b.软件自动生成与智能服务四川省重点实验室,成都 610225;2.河南省气象探测数据中心,郑州 450003
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2021)10-016-2981-07
DOI 10.19734/j.issn.1001-3695.2021.02.0040
摘要 Web服务作为无形的产品,不具备真实环境下的空间地理位置坐标,针对服务推荐中无法衡量用户群体与Web服务之间的距离位置关系,造成用户相似度计算失衡,导致推荐不准确等问题,提出了基于用户空间位置评分云模型的Web服务协同过滤推荐算法。首先基于用户群体的行为数据量化Web服务的热度区域,通过空间位置量化评分描述用户对于Web服务的兴趣偏好;其次利用云模型来描述每个用户空间行为评分的整体特征,设计了云模型间相似贴近度的计算方法,基于该方法提出了一种用户差异程度系数评估算法,并作为调控系数优化了皮尔森相似度量;最后通过协同过滤找出用户感兴趣的Web服务。实验结果表明该算法使得用户行为偏好的区域划分更加精确,在推荐准确率上明显提高,为基于位置的Web服务推荐提供新颖的方案。
关键词 Web服务; 空间位置坐标; 云模型; 皮尔森相关系数; 协同过滤推荐
基金项目 四川省重大科技专项资助项目(2017GZDZX0002)
本文URL http://www.arocmag.com/article/01-2021-10-016.html
英文标题 Collaborative filtering recommendation algorithm for Web services based on user-space location score cloud model
作者英文名 Wang Ruixiang, Wei Le, Duan Yanfei, Yao Dengguo, Zhang Hang
机构英文名 1.a.School of Software Engineering,b.Automatic Software Generation & Intelligence Service Key Laboratory of Sichuan Province,Chengdu University of Information Technology,Chengdu 610225,China;2.Meteorological Observation Data Center of Henan Province,Zhengzhou 450003,China
英文摘要 Web services, as invisible products, do not have spatial geographic coordinates in the real environment. Aiming at the inability to measure the distance position relationship between the user group and the Web service in the services recommendation, caused user similarity calculations to be out of balance, leading to inaccurate recommendations and other issues, this paper proposed a collaborative filtering recommendation algorithm for Web services based on user-space location rating cloud model. Firstly, based on the behavior data of user groups, it quantified the hot areas of Web services and described the user's interest and preference for Web services through the spatial location quantitative score. Secondly, it used the cloud model to describe the overall characteristics of each user's spatial behavior score, and designed the calculation method of similar closeness between cloud models. Based on this method, this paper proposed a user difference degree coefficient evaluation algorithm, and optimized the Pearson similarity measure as a control coefficient. Finally, it found out the Web services that users were interested in through collaborative filtering. Experimental results show that the algorithm makes the regional division of user behavior preferences more accurate, the recommendation accuracy rate is significantly improved, and it provides a novel solution for location-based Web service recommendation.
英文关键词 Web services; spatial position coordinates; cloud model; Pearson correlation coefficient; collaborative filtering recommendation
参考文献 查看稿件参考文献
 
收稿日期 2021/2/8
修回日期 2021/4/8
页码 2981-2987
中图分类号 TP301.6
文献标志码 A