《计算机应用研究》|Application Research of Computers

LPA-SKFST半监督特征提取方法

Semi-supervised feature extraction method based on LPA-SKFST

免费全文下载 (已被下载 次)  
获取PDF全文
作者 彭杰,龚晓峰,李剑
机构 1.四川大学 电气工程学院,成都 610065;2.浙江农林大学 信息工程学院,杭州 311300
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2021)06-010-1657-05
DOI 10.19734/j.issn.1001-3695.2020.09.0244
摘要 针对传统LDA类半监督特征提取方法的解矢量非正交、解空间不稳定和非线性处理能力不足等问题,提出LPA-SKFST方法。该方法的前置级LPA通过标签传播提高标记样本容量,后置级SKFST(半监督核最佳鉴别矢量集)采用双向正则方法对KFST引入全局结构保持正则和Tikhonov正则,并以成对空间求解方法求取Fisher分母矩阵奇异和非奇异时的统一形式解。在circle、iris、wine和自有珍珠光谱集的分类实验中,PCA、LDA、SLDA和SDG组的准确率随样本集、标记样本占比和标签可靠性变化而波动,LPA-SKFST组则稳定保持在85%以上。该结果证明,LPA-SKFST能克服标记样本占比和标记可靠性不足局限,在实际集和线性不可分人工集上取得一致、稳定的优秀表现。
关键词 KPCA; KFST; LDA; 双向正则; 全局结构保持正则; 成对空间求解方法
基金项目 浙江省公益技术研究计划资助项目(LGG18F030006)
本文URL http://www.arocmag.com/article/01-2021-06-010.html
英文标题 Semi-supervised feature extraction method based on LPA-SKFST
作者英文名 Peng Jie, Gong Xiaofeng, Li Jian
机构英文名 1.College of Electrical Engineering,Sichuan University,Chengdu 610065,China;2.School of Information Engineering,Zhejiang A&F University,Hangzhou 311300,China
英文摘要 In order to solve the problems of traditional LDA semi supervised feature extraction methods, such as the solution vector is not orthogonal, the solution space is unstable and there is no linear processing ability, this paper proposed LPA-SKFST. In this method, the LPA part increased the proportion of labeled samples through label propagation, semi supervised kernel optimal discriminant vectors SKFST combined KFST, Tikhonov regularization and global preserving regularization by two-way regularization method, and adopted the pair space solution method to ensure the uniform solution form when Fisher's denominator matrix was singular or nonsingular. In the classification experiments of circle, iris, wine and pearl spectral, the accuracy of PCA, LDA, SLDA and SDG groups fluctuated with the change of sample set, labeled sample proportion and label reliability, while LPA-SKFST group kept stable above 85%. The results show that PA-SKFST can overcome the limitations of low proportion of labeled samples and unreliable labeling, and its performance is stable and excellent in both actual set and linear indivisible artificial set.
英文关键词 KPCA; KFST; LDA; two-way regularization; global structure regularization; solving method of pairwise space
参考文献 查看稿件参考文献
 
收稿日期 2020/9/30
修回日期 2020/11/19
页码 1657-1661
中图分类号 TP181
文献标志码 A