《计算机应用研究》|Application Research of Computers

一种改进的樽海鞘群算法

Improved salp swarm algorithm

免费全文下载 (已被下载 次)  
获取PDF全文
作者 陈连兴,牟永敏
机构 北京信息科技大学 a.网络文化与数字传播北京市重点实验室;b.计算机学院,北京 100101
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2021)06-008-1648-05
DOI 10.19734/j.issn.1001-3695.2020.09.0242
摘要 针对樽海鞘群算法在对函数优化问题求解上出现的求解精度不高、收敛速度慢的缺点,提出了一种改进的群海鞘群算法。对于领导者引入加权重心取代最优个体位置,防止过早聚集在最优个体附近;对于追随者引入自适应惯性权重平衡算法的全局搜索和局部寻优能力;最后对于个体进行逐维随机差分变异,减少维间干扰,提高了种群的多样性。仿真实验结果表明改进的樽海鞘群算法在均值、标准差和收敛曲线优于标准樽海鞘群算法和其他改进算法,说明改进后的算法提高了寻优性能,有较高的求解精度和较快的收敛速度。
关键词 樽海鞘群算法; 加权重心; 逐维变异; 惯性权重; 函数优化
基金项目 北京市自然科学基金资助项目(Z160002)
网络文化与数字传播北京市重点实验室开放课题(5221935409)
本文URL http://www.arocmag.com/article/01-2021-06-008.html
英文标题 Improved salp swarm algorithm
作者英文名 Chen Lianxing, Mu Yongmin
机构英文名 a.Beijing Key Laboratory of Internet Culture & Digital Dissemination Research,b.Computer School,Beijing Information Science & Technology University,Beijing 100101,China
英文摘要 This paper proposed an improved salp swarm algorithm that aimed to solve the problem of low precision and slow convergence speed in solving function optimization problems. For leaders, this algorithm replaced the optimal individual position with weighted centroid to prevent premature aggregation near the optimal individual. It also introduced adaptive inertia weight to the followers to balance the global search and local optimization capabilities of the algorithm. Furthermore, this algorithm contributed to reducing the inter-dimensional interference and improving the diversity of the population by dimensional random difference mutation. The simulation results illustrate that the improved algorithm is better than the standard tympanum group algorithm and other improved algorithms in terms of mean, standard deviation and convergence curve. The results also show that the improved algorithm improves the performance of optimization, and has higher precision as well as faster convergence speed.
英文关键词 salp swarm algorithm(SSA); weighted centroid; dimension by dimension mutation; inertia weight; function optimization
参考文献 查看稿件参考文献
 
收稿日期 2020/9/22
修回日期 2020/11/6
页码 1648-1652
中图分类号 TP301.6
文献标志码 A