《计算机应用研究》|Application Research of Computers

完备局部凸凹计数模式及其旋转不变纹理分类

Completed local convex-and-concave count pattern for rotation invariant texture classification

免费全文下载 (已被下载 次)  
获取PDF全文
作者 陈熙
机构 贵州师范大学 大数据与计算机科学学院,贵阳 550025
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)08-2549-04
DOI 10.3969/j.issn.1001-3695.2018.08.077
摘要 针对局部凸凹模式算法对旋转纹理图像描述的不足,提出了局部凸凹计数模式进行旋转不变纹理描述。局部凸凹计数模式统计纹理的局部凸或凹模式数目,而抛弃了局部凸凹模式的结构信息。在纹理图像发生平面内旋转的情况下,局部凸凹计数模式所提取的纹理特征具有不变性。另外,为了增强局部凸凹计数模式的性能,提出了完备局部凸凹计数模式算法。完备局部凸凹计数模式不仅统计了局部凸或凹模式数目,还对局部纹理的凸或凹强度进行了描述,中心像素所包含的鉴别信息也统计在完备局部凸凹模式算法中。两个纹理数据库和一个掌纹数据库上的实验充分表明完备局部凸凹计数模式是一种有效的旋转不变纹理特征提取算法。
关键词 局部凸凹模式;完备局部凸凹计数模式;旋转不变纹理分类
基金项目 国家自然科学基金资助项目(61762022)
贵州师范大学2017年博士科研启动项目
云南省应用基础研究计划项目(KKS0201503018)
贵州省教育厅创新群体重大研究项目(黔教合KY字[2016]027)
工业4.0仿真设计创新中心资助项目(黔科中引地[2016]4006)
本文URL http://www.arocmag.com/article/01-2018-08-077.html
英文标题 Completed local convex-and-concave count pattern for rotation invariant texture classification
作者英文名 Chen Xi
机构英文名 SchoolofBigData&ComputerScience,GuizhouNormalUniversity,Guiyang550025,China
英文摘要 Local convex-and-concave pattern is a newly proposed algorithm for texture classification.However, local convex-and-concave pattern could be weak when facing rotated texture.Aiming at this weakness of local convex-and-concave pattern, this paper proposed a novel texture descriptor, local convex-and-concave count pattern.Local convex-and-concave count pattern counted the number of patterns of convex or concave and abandoned the local convex-and-concave structural information.Furthermore, to enhance the performance of local convex-and-concave count pattern, it also proposed competed local convex-and-concave count pattern, in which the magnitude of convex or concave was also considered.It converted the center pixels represented the image gray levels into a binary code by global threshold in local convex-and-concave count pattern.Extensive experiments on two texture databases and one palmprint database validate the effectiveness of competed local convex-and-concave count pattern.
英文关键词 local convex-and-concave pattern; competed local convex-and-concave count pattern; rotation invariant texture classification
参考文献 查看稿件参考文献
  [1] Wang Li, He Dongchen. Texture classification using texture spectrum[J] . Pattern Recognition, 1990, 23(8):905-910.
[2] Liao S, Law M W K, Chung A C S. Dominant local binary patterns for texture classification[J] . IEEE Trans on Image Processing, 2009, 18(5):1107-1118.
[3] Ojala T, Pietikinen M, Menp T. Gray scale and rotation invariant texture classification with local binary patterns[C] //Proc of the 6th European Conference on Computer Vision. Berlin:Springer, 2000:404-420.
[4] Guo Zhenhua, Zhang Lei, Zhang D. A completed modeling of local binary pattern operator for texture classification[J] . IEEE Trans on Image Processing, 2010, 19(6):1657-1663.
[5] Xue Gengjian, Song Li, Sun Jun, et al. Hybrid center-symmetric local pattern for dynamic background subtraction[C] //Proc of the IEEE International Conference on Multimedia and Expo. Piscataway, NJ:IEEE Press, 2011:1-6.
[6] Zhao Yang, Huang Deshuang, Jia Wei. Completed local binary count for rotation invariant texture classification[J] . IEEE Trans on Image Processing, 2012, 21(10):4492-4497.
[7] Papakostas G A, Koulouriotis D E, Karakasis E G, et al. Moment-based local binary patterns:a novel descriptor for invariant pattern recognition applications[J] . Neurocomputing, 2013, 99(1):358-371.
[8] Zhang Wenchao, Shan Shiguang, Gao Wen, et al. Local Gabor binary pattern histogram sequence (LGBPHS):a novel non-statistical model for face representation and recognition[C] //Proc of the 10th IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE Press, 2005:786-791.
[9] Zhang Baochang, Shan Shiguang, Chen Xilin, et al. Histogram of Gabor phase patterns (HGPP):a novel objects representation approach for face recognition[J] . IEEE Trans on Image Processing, 2007, 16(1):57-68.
[10] Chan C, Kittler J, Messer K. Multi-scale local binary pattern histograms for face recognition[C] // Proc of the International Conference on Biometrics. Berlin:Springer, 2007:809-818.
[11] Zhang Baochang, Gao Yongsheng, Zhao Sanqiang, et al. Local derivative pattern versus local binary pattern:face recognition with higher-order local pattern descriptor[J] . IEEE Trans on Image Processing, 2010, 19(2):533-544.
[12] Chen Xi, Zhou Zaihong, Zhang Jiashu, et al. Local convex-and-concave pattern:an effective texture descriptor[J] . Information Sciences, 2016, 363(10):120-139.
[13] BackesA R, CasanovaD, Bruno O M. Color texture analysis based on fractal descriptors[J] . Pattern Recognition, 2012, 45(5):1984-1992.
[14] Brodatz texture database[DB/OL] . http://multibandtexture. recherche. usherbrooke. ca/colored%20_brodatz. html.
[15] The PolyU palmprint database[DB/OL] . http://www4. comp. polyu. edu. hk/biometrics/.
[16] Zhang D D, Kong W K, You J. Online palmprint identification[J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(9):1041-1050.
[17] Li S Z, Jain A K. Handbook of face recognition[M] . New York:Springer-Verlag, 2005:287-289.
收稿日期 2017/3/26
修回日期 2017/5/11
页码 2549-2552
中图分类号 TP391.4
文献标志码 A