《计算机应用研究》|Application Research of Computers

基于DVFS感知与虚拟机动态合并的云数据中心能效策略

Energy efficiency strategy in cloud data center based on DVFS-aware and dynamic virtual machines consolidation

免费全文下载 (已被下载 次)  
获取PDF全文
作者 吴文铁,杨锐,李敏
机构 绵阳师范学院 信息工程学院,四川 绵阳 621000
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)08-2484-05
DOI 10.3969/j.issn.1001-3695.2018.08.062
摘要 为了解决云数据中心资源分配时能耗与性能间的均衡问题,提出了一种基于DVFS感知与虚拟机动态合并的能效优化策略。首先,策略通过新的DVFS管理算法(DVFS-perf)在不降低系统性能的同时降低了数据中心功耗;然后,通过频率感知的虚拟机VM部署合并算法(frequency-aware placement)在实现DVFS最优配置的同时最小化总体能耗,同时确保了虚拟机映射时的QoS保障;最后,通过真实云负载数据流构建仿真实验进行了性能分析。结果表明,在动态负载条件下,策略可以在不降低QoS和不增加SLA违例的情况下,降低虚拟机迁移次数和数据中心的总体能耗,更好地实现能耗与性能的均衡。
关键词 能效优化;数据中心;云计算;DVFS;动态合并
基金项目 四川省教育厅资助项目(15ZB0281)
本文URL http://www.arocmag.com/article/01-2018-08-062.html
英文标题 Energy efficiency strategy in cloud data center based on DVFS-aware and dynamic virtual machines consolidation
作者英文名 Wu Wentie, Yang Rui, Li Min
机构英文名 SchoolofInformationEngineering,MianyangNormalUniversity,MianyangSichuan621000,China
英文摘要 For solving the trade-off problem between energy consumption and performance during resource allocation in cloud data center, this paper designed an energy-efficient optimizaiton strategy combined DVFS-aware and dynamic virtual machine consolidation. First, through a new DVFS-performance algorithm, this strategy could reduce power consumption while preventing performance degradation. Then, it desinged a DVFS-aware consolidation algorithm to optimize power consumption, considering the DVFS configuration that would be necessary when mapping virtual machines to maintain QoS. Finally, it performed an extensive evaluation on the simulation toolkit using real cloud traces. Experimental results show that this strategy can obtain less virtual machines migration and provide substantial energy savings of data center for scenarios under dynamic in workload conditions without reducing QoS and increasing SLA violation, which can get better trade-off between energy consumption and performance.
英文关键词 energy optimization; green data centers; cloud computing; DVFS; dynamic consolidation
参考文献 查看稿件参考文献
  [1] Engbers I, Taen E. Green data net, report to IT room INFRA[R] . [S. l. ] :European Commission, 2014.
[2] Koomey J. Growth in data center electricity use 2005 to 2010[R] . Oakland, CA:Analytics Press, 2011.
[3] Rafique M M, Ravi N, Cadambi S, et al. Power management for heterogeneous clusters:an experimental study[C] //Proc of International Green Computing Conference and Workshops. Washington DC:IEEE Computer Society, 2012:1-8.
[4] Wu C M, Chang R S, Chan H Y. A green energy-efficient scheduling algorithm using the DVFS technique for cloud datacenters[J] . Future Generation Computer Systems, 2014, 37(1):141-147.
[5] Huang Pengcheng, Kumar P, Giannopoulou G, et al. Energy efficient DVFS scheduling for mixed-criticality systems[C] // Proc of the 14th International Conference on Embedded Software. Piscataway, NJ:IEEE Press, 2014:1-10.
[6] Buyya R, Beloglazov A, Abawajy J. Energy-efficient management of data center resources for cloud computing:a vision, architectural elements, and open challenges[C] //Proc of International Conference on Parallel and Distributed Processing Techniques and Applications. [S. l. ] :CSREA Press, 2012:12-15.
[7] Ferdaus M H, Murshed M, Calheiros R, et al. Virtual machine consolidation in cloud data centers using ACO metaheuristic[C] //Proc of the 20th International European Conference on Parallel Processing. Swizzerland:Springer International Publishing, 2014:306-317.
[8] Hermenier F, Lorca X, Menaud J M, et al. Entropy:a consolidation manager for clusters[C] //Proc of ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments. New York:ACM Press, 2012:41-50.
[9] Liu Haikun, Xu Chengzhong, Jin Hai, et al. Performance and energy modeling for live migration of virtual machines[C] //Proc of the 20th International Symposium on High Performance Distributed Computing. New York:ACM Press, 2013:171-182.
[10] Maio V D, Prodan R, Benedict S, et al. Modelling energy consumption of network transfers and virtual machine migration[J] . Future Generation Computer Systems, 2016, 56(1):388-406.
[11] Wang Yefu, Wang Xiaorui. Performance-controlled server consolidation for virtualized data centers with multi-tier applications[J] . Sustainable Computing:Informatics and Systems, 2014, 4(1):52-65.
[12] Petrucci V, Loques O, Moss D. A dynamic optimization model for power and performance management of virtualized clusters[C] //Proc of the 3rd International Conference on Energy-efficient Computing & Networking. New York:ACM Press, 2012:225-233.
[13] 陈俊, 申田静. 云计算平台虚拟机迁移能耗研究[J] . 微电子学与计算机, 2016, 33(1):72-75.
[14] 赵彬, 王淖, 王高才. 云计算环境下的节能任务调度策略的随机Petri网分析[J] . 计算机科学, 2015, 42(8):111-117.
[15] Arroba P, Risco-Mart J L, Zapater M, et al. Server power modeling for run-time energy optimization of cloud computing facilities[J] . Energy Procedia, 2014, 62(1):401-410.
[16] Beloglazov A, Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[J] . Concurrency and Computation:Practice & Experience, 2012, 24(13):1397-1420.
[17] Frey S. Conformance checking and simulation-based evolutionary optimization for deployment and reconfiguration of software in the cloud[M] //Books on Demand GmbH. German:University of Kiel, 2014.
[18] Calheiros R N, Ranjan R, Beloglazov A, et al. CloudSim:a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J] . Software:Practice and Experience, 2011, 41(1):23-50.
[19] Park K, Pai V S. CoMon:a mostly-scalable monitoring system for PlanetLab[J] . ACM SIGOPS Operating Systems Review, 2006, 40(1):65-74.
收稿日期 2017/3/30
修回日期 2017/5/3
页码 2484-2488,2491
中图分类号 TP393.01
文献标志码 A