《计算机应用研究》|Application Research of Computers

多层星型网络的特征值谱及同步能力分析

Synchronizability and eigenvalues of multilayer star networks

免费全文下载 (已被下载 次)  
获取PDF全文
作者 孙娟,李晓霞,申玉卓,李艳雨
机构 河北工业大学 a.省部共建电工装备可靠性与智能化国家重点实验室;b.河北省电磁场与电器可靠性重点实验室,天津 300130
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)08-2480-04
DOI 10.3969/j.issn.1001-3695.2018.08.061
摘要 针对多层双向耦合星型网络的特征值谱对网络的同步能力进行了研究。通过严格推导出多层双向耦合星型网络特征值的解析表达式,分析了节点数、层数、层内耦合强度和层间耦合强度与网络同步能力的关系,重点分析了层数对网络同步能力的影响。网络的同步能力除了受层内耦合强度和层间叶子节点之间的耦合强度影响外,当同步域无界时,若层间叶子节点之间的耦合强度较弱,网络的同步能力还依赖于层数;当同步域有界时,网络的同步能力随节点数、层间中心节点之间的耦合强度增大而变弱;若层内耦合强度较弱,网络的同步能力随层数增大而减弱;若层间叶子节点之间的耦合强度较弱,网络的同步能力随层数增大反而增强。
关键词 多层网络;星型网络;特征值谱;同步能力
基金项目 河北省自然科学基金资助项目(E2011202051)
本文URL http://www.arocmag.com/article/01-2018-08-061.html
英文标题 Synchronizability and eigenvalues of multilayer star networks
作者英文名 Sun Juan, Li Xiaoxia, Shen Yuzhuo, Li Yanyu
机构英文名 a.StateKeyLaboratoryofReliability&IntelligenceofElectricalEquipment,b.KeyLaboratoryofElectromagneticField&ElectricalApparatusReliabilityofHebeiProvince,HebeiUniversityofTechnology,Tianjin300130,China
英文摘要 This paper derived strictly the spectrum of the supra-Laplace matrix of multilayer star networks through bi-directionally coupling by applying the master stability method. Through mathematical analysis of eigenvalues of the supra-Laplace matrix, this paper studied how the node number, the layer number, the intra-layer and inter-layer coupling strengths influence the synchronizability of multilayer star networks. When the synchronous domain was unbounded, the synchronizability of multilayer star networks was not only relates to the intra-layer coupling strength or the inter-layer coupling strength between the leaf nodes, but also related to the layer number. If the synchronous domain was bounded, the synchronizability of multilayer star networks was inversely proportional to the node number and the inter-layer coupling strength between the hub nodes. If the in-tralayer coupling strength was weak, the synchronizability of multilayer star networks was directly proportional to the layer number, while inversely proportional to it when the coupling strength between the leaf nodes was weak.
英文关键词 multilayer network; star network; eigenvalue spectrum; synchronizability
参考文献 查看稿件参考文献
  [1] Porfiri M, Stilwell D J, Bollt E M. Synchronization in random weighted directed networks[J] . IEEE Trans on Circuits & Systems I:Regular Papers, 2008, 55(10):3170-3177.
[2] Wong W K, Zhang Wenbing, Tang Yang, et al. Stochastic synchronization of complex networks with mixed impulses[J] . IEEE Trans on Circuits & Systems I:Regular Papers, 2013, 60(10):2657-2667.
[3] Gao Jianxi, Buldyrev S V, Havlin S, et al. Robustness of a network of networks[J] . Physical Review Letters, 2010, 107(19):3096-3100.
[4] Simon D N, Wilson K L. The nucleoskeleton as a genome-associated dynamic ‘network of networks’[J] . Nature Reviews Molecular Cell Biology, 2011, 12(11):695-708.
[5] Lee K M, Kim J Y, Cho W, et al. Correlated multiplexity induces unusual connectivity in multiplex random networks[J] . New Journal of Physics, 2011, 14(3):33027-33038.
[6] Mucha P J, Richardson T, Macon K, et al. Community structure in time-dependent, multiscale, and multiplex networks[J] . Science, 2009, 328(5980):876-878.
[7] Li Yang, Wu Xiaoqun, Lu Jun’an, et al. Synchronizability of duplex networks[J] . IEEE Trans on Circuits & Systems Ⅱ Express Briefs, 2015, 63(2):206-210.
[8] Lu Renquan, Yu Wenwu, Lyu Jinhu, et al. Synchronization on complex networks of networks[J] . IEEE Trans on Neural Networks & Learning Systems, 2014, 25(11):2110-2118.
[9] Xu Mingming, Zhou Jin, Lu Jun’an, et al. Synchronizability of two-layer networks[J] . The European Physical Journal B, 2015, 88(9):1-6.
[10] Timme M, Wolf F, Geisel T. Topological speed limits to network synchronization[J] . Physical Review Letters, 2004, 92(7):074101(1-4).
[11] Um J, Minnhagen P, Kim B J. Synchronization in interdependent networks[J] . Chaos, 2011, 21(2):025106.
[12] Boccaletti S, Bianconi G, Criado R, et al. The structure and dynamics of multilayer networks[J] . Physics Reports, 2014, 544(1):1-122.
[13] Gómezgardees J. Diffusion dynamics on multiplex networks[J] . Physical Review Letters, 2013, 110(2):028701(1-6).
[14] Soléribalta A, De Domenico M, Kouvaris N E, et al. Spectral properties of the Laplacian of multiplex networks[J] . Physical Review E, 2013, 88(3):032807(1-6).
[15] Cai Shuiming, Zhou Peipei, Liu Zengrong. Synchronization analysis of directed complex networks with time-delayed dynamical nodes and impulsive effects[J] . Nonlinear Dynamics, 2014, 76(3):1677-1691.
[16] Chen Yao, Yu Wenwu, Tan Shaolin, et al. Synchronizing nonlinear complex networks via switching disconnected topology[J] . Automatica, 2016, 70(8):189-194.
[17] Boccaletti S, Latora V, Moreno Y, et al. Complex networks:structure and dynamics[J] . Physics Reports, 2006, 424(4-5):175-308.
[18] Blaabjerg F, Teodorescu R, Liserre M, et al. Overview of control and grid synchronization for distributed power generation systems[J] . IEEE Trans on Industrial Electronics, 2006, 53(5):1398-1409.
[19] Song Qiang, Cao Jinde, Liu Fang. Synchronization of complex dynamical networks with nonidentical nodes[J] . Physics Letters A, 2010, 374(4):544-551.
[20] 潘灶烽. 加权复杂网络的建模研究[D] . 上海:上海交通大学, 2005.
[21] 冷延东. Ad hoc互连网络小世界特性的研究[D] . 南京:南京邮电大学, 2008.
[22] Xu Mingming, Lu Jun’an, Zhou Jin. Synchronizability and eigenvalues of two-layer star networks[J] . Acta Physica Sinica, 2016, 65(2):028902(1-14).
[23] Aguirre J, Sevillaescoboza R, Gutiérrez R, et al. Synchronization of interconnected networks:the role of connector nodes[J] . Physical Review Letters, 2014, 112(24):248701(1-5).
[24] Dabrowski A. The largest transversal Lyapunov exponent and master stability function from the perturbation vector and its derivative dot product[J] . Nonlinear Dynamics, 2012, 69(3):1225-1235.
[25] Sun Jie, Bollt E M, Nishikawa T. Master stability functions for coupled near-identical dynamical systems[J] . Europhysics Letters, 2009, 85(6):60011(1-5).
[26] Szell M, Lambiotte R, Thurner S. Multirelational organization of large-scale social networks in an online world[J] . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31):13636-13641.
[27] Kaluza P, Klzsch A, Gastner M T, et al. The complex network of global cargo ship movements[J] . Journal of the Royal Society Interface, 2010, 7(48):1093-1103.
[28] Li Wenyuan, Liu Chunchi, Zhang Tong, et al. Integrative analysis of many weighted co-expression networks using tensor computation[J] . Plos Computational Biology, 2011, 7(6):e1001106(1-13).
[29] Buldyrev S V, Parshani R, Paul G, et al. Catastrophic cascade of failures in interdependent networks[J] . Nature, 2010, 464(7291):1025-1028.
[30] Cardillo A, Zanin M, Gómez-Gardees J, et al. Modeling the multi-layer nature of the European air transport network:resilience and passengers re-scheduling under random failures[J] . European Physical Journal Special Topics, 2013, 215(1):23-33.
[31] Wang Zhen, Wang Lin, Perc M. Degree mixing in multilayer networks impedes the evolution of cooperation[J] . Physical Review E Statistical Nonlinear & Soft Matter Physics, 2014, 89(5-1):052813(1-8).
收稿日期 2017/4/9
修回日期 2017/5/17
页码 2480-2483
中图分类号 TP391.9
文献标志码 A