《计算机应用研究》|Application Research of Computers

基于贝叶斯网络的复杂事件大数据处理系统测试数据生成方法研究

Research on complex event big data processing system test data generation method based on Bayesian network

免费全文下载 (已被下载 次)  
获取PDF全文
作者 赵会群,刘金銮
机构 北方工业大学 计算机学院,北京 100144
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)08-2389-04
DOI 10.3969/j.issn.1001-3695.2018.08.037
摘要 针对复杂事件大数据处理系统测试需求,提出一种基于贝叶斯网络的复杂事件大数据处理系统测试数据生成方法。该方法以部分真实数据中的复杂事件结构关系及概率分布特征构建贝叶斯网络预测模型,生成具有真实数据结构特征与分布特征的复杂事件测试数据集。实验结果表明,提出的方法具有可行性。
关键词 大数据;复杂事件;贝叶斯网络;数据生成
基金项目 国家自然科学基金资助项目(61672041)
本文URL http://www.arocmag.com/article/01-2018-08-037.html
英文标题 Research on complex event big data processing system test data generation method based on Bayesian network
作者英文名 Zhao Huiqun, Liu Jinluan
机构英文名 SchoolofComputerScience,NorthChinaUniversityofTechnology,Beijing100144,China
英文摘要 Aiming at the requirements of testing for complex event big data processing system, this paper proposed a test data generation method for complex event big data processing system based on Bayesian network.The method constructed Bayesian network prediction model relied on complex event structure relation and probability distribution feature in some real data, and generated a complex event test data set which had similarity structure and distribution characteristics with real data.The results of experiments show that the proposed method is feasible.
英文关键词 big data; complex event; Bayesian network; data generator
参考文献 查看稿件参考文献
  [1] Bizarro P. BiCEP:benchmarking complex event processing systems[C] //Dagstuhl Seminar Proceedings:Event Processing. 2007.
[2] Shahbaz M, McMinn P, Stevenson M. Automatic generation of valid and invalid test data for string validation routines using web searches and regular expressions[J] . Science of Computer Programming, 2015, 97(1):405-425.
[3] Aleti A, Grunske L. Test data generation with a Kalman filter-based adaptive genetic algorithm[J] . Journal of Systems and Software, 2015, 103(5):343-352.
[4] 王培崇, 钱旭. 基于改进鱼群算法的路径测试数据生成[J] . 计算机应用, 2013, 33(4):1139-1141.
[5] 黎方正, 罗大庸, 谢东. 一种海量数据生成方法[J] . 小型微型计算机系统, 2009, 30(12):2420-2423.
[6] Lee Y C, Han H, Zomaya A Y, et al. Resource-efficient workflow scheduling in clouds[J] . Knowledge-Based Systems, 2015, 80(5):153-162.
[7] Dias J, Guerra G, Rechinha F, et al. Data-centric iteration in dynamic workflows[J] . Future Generation Computer Systems, 2015, 46(5):114-126.
[8] 夏建明, 杨俊安, 张琼. 基于数据符号化表示和云模型的时序数据生成方法[J] . 计算机应用研究, 2010, 27(10):3691-3693, 3697.
[9] 荆心, 张璟, 李军怀. 复杂事件处理技术及其在物流物联网中的应用[J] . 计算机应用, 2013, 33(7):2026-2030, 2036.
[10] 谷峪, 于戈, 吕雁飞, 等. 针对泊松流的截止期敏感的复杂事件处理资源分配模型[J] . 计算机学报, 2012, 35(5):937-950.
[11] Kong Xiangsheng. The study of RFID system based on CEP[C] //Proc of the 2nd International Conference on Consumer Electronics, Communications and Networks. Piscataway, NJ:IEEE Press, 2012:1477-1480.
[12] 郑明秀, 付春常, 杨明根. 复杂事件描述语言事件表达式的研究[J] . 计算机技术与发展, 2012, 22(7):113-115, 120.
[13] 孟由, 栾钟治, 谢明, 等. 一种基于算子的可扩展复杂事件处理模型[J] . 软件学报, 2014, 25(11):2715-2730.
[14] 金澈清, 钱卫宁, 周敏奇, 等. 数据管理系统评测基准:从传统数据库到新兴大数据[J] . 计算机学报, 2015, 38(1):18-34.
[15] 詹剑锋, 高婉铃, 王磊, 等. BigDataBench:开源的大数据系统评测基准[J] . 计算机学报, 2016, 39(1):196-211.
[16] Xiong Wen, Yu Zhibin, Bei Zhendong, et al. A characterization of big data benchmarks[C] //Proc of IEEE International Conference on Big Data. Washington DC:IEEE Computer Society, 2013:118-125.
[17] Katal A, Wazid M, Goudar R H. Big data:issues, challenges, tools and good practices[C] //Proc of the 6th International Conference on Contemporary Computing. Piscataway, NJ:IEEE Press, 2013:404-409.
[18] 刘娟. BGP路由策略冲突检测研究与实现[D] . 北京:北方工业大学, 2005.
[19] Higashino W A, Capretz M A M, Bittencour L F. CEPSim:a simulator for cloud-based complex event processing[C] //Proc of IEEE International Congress on Big Data. Washington DC:IEEE Computer Society, 2015:182-190.
[20] Ding Zhiming, Gao Xu, Xu Jiajie, et al. IOT-StatisticDB:a general statistical database cluster mechanism for big data analysis in the Internet of things[C] //Proc of IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing. Piscataway, NJ:IEEE Press, 2013:535-543.
[21] 赵会群, 孙晶, 杨岩坤, 等. 复杂事件模式检测与CEP 测试数据生成算法研究[J] . 计算机学报, 2017, 40(1):256-272.
[22] Schmidt R, Rella M, Schlarb S. ToMaR:a data generator for large volumes of content[C] //Proc of the 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Washington DC:IEEE Computer Society, 2014:937-942.
[23] Díaz M, Juan G, Lucas O, et al. Big data on the internet of things:an example for the e-health[C] //Proc of the 6th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing. Washington DC:IEEE Computer Society, 2012:898-900.
收稿日期 2017/9/12
修回日期 2017/10/25
页码 2389-2392,2396
中图分类号 TP391
文献标志码 A