《计算机应用研究》|Application Research of Computers

基于手机信令和导航数据的出行方式识别方法

Recognition of urban travel method based on cell phone signaling and navigation map data

免费全文下载 (已被下载 次)  
获取PDF全文
作者 杜亚朋,雒江涛,程克非,唐刚,徐正,罗克韧,余疆
机构 1.“新一代信息网络与终端”重庆市协同创新中心,重庆 400065;2.重庆邮电大学 电子信息与网络工程研究院,重庆 400065;3.中国移动通信集团重庆有限公司,重庆 400065
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)08-2311-04
DOI 10.3969/j.issn.1001-3695.2018.08.018
摘要 基于手机信令识别居民出行方式对于智慧交通规划具有重要意义。通过结合信令和导航地图数据,利用聚类算法以及时间关联性算法,实现步行、驾车、公共交通等出行方式的识别。结果表明,结合导航地图数据后识别正确率得到明显提高,与只利用手机信令的识别方法相比,整体准确率提升超过15%,具有较高的识别准确率,同时算法执行时间为187 s,效率较高。整体而言,该识别算法适合在实际工程环境中使用。
关键词 城市交通;出行方式识别;聚类分析;时间关联;手机信令;导航数据
基金项目 重庆市基础科学与前沿技术研究重点项目(cstc2015jcyjBX0009)
重庆市科技创新领军人才计划支持项目(CSTCKJCXLJRC20)
本文URL http://www.arocmag.com/article/01-2018-08-018.html
英文标题 Recognition of urban travel method based on cell phone signaling and navigation map data
作者英文名 Du Yapeng, Luo Jiangtao, Cheng Kefei, Tang Gang, Xu Zheng, Luo Keren, Yu Jiang
机构英文名 1.ChongqingCollaborativeInnovationCenterforNewGenerationInformationNetwork&Terminal,Chongqing400065,China;2.ElectronicInformation&NetworkingEngineeringInstitute,ChongqingUniversityofPosts&Telecommunications,Chongqing400065,China;3.ChinaMobileCommuncationsGroupChongqingCompanyLimited,Chongqing400065,China
英文摘要 Based on the cell phone signaling data to identify the residents’ travel method plays an important role in intelligent transportation planning. This paper combined cell phone signaling data with navigation map data, used clustering algorithm and time correlation algorithm to identify the travel mode such as walking, driving and public transportation. The experimental results indicate that the recognition accuracy is significantly improved when the cell phone signaling and navigation map data are combined. And compare with the recognition scheme that only uses cell phone signaling, the comprehensive recognition accuracy of this model increases by more than 15% and it is a high recognition accuracy. At the same time, the algorithm execution time is 187 seconds and it is a high efficiency. In general, the recognition algorithm is suitable for use in real enginee-ring environments.
英文关键词 urban traffic; recognition of travel method; cluster analysis; time correlation; mobile phone signaling; navigation data
参考文献 查看稿件参考文献
  [1] 冉斌. 手机数据在交通调查和交通规划中的应用[J] . 城市交通, 2013, 11(1):72-81.
[2] Jahangiri A, Rakha H A. Applying machine learning techniques to transportation mode recognition using mobile phone sensor data[J] . IEEE Trans on Intelligent Transportation Systems, 2015, 16(5):2406-2417.
[3] 李喆, 孙健, 倪训友. 基于智能手机大数据的交通出行方式识别研究[J] . 计算机应用研究, 2016, 33(12):3527-3529, 3558.
[4] Shafique M A, Hato E. Use of acceleration data for transportation mode prediction[J] . Transportation, 2015, 42(1):163-188.
[5] Xu Chao, Ji Minhe, Chen Wen, et al. Identifying travel mode from GPS trajectories through fuzzy pattern recognition[C] //Proc of the 7th International Conference on Fuzzy Systems and Knowledge Disco-very. Piscataway, NJ:IEEE Press, 2010:889-893.
[6] Abdelaziz A M, Youssef M. The diversity and scale matter:ubiquitous transportation mode detection using single cell tower information[C] //Proc of the 81st IEEE Vehicular Technology Conference. Piscataway, NJ:IEEE Press, 2015:1-5.
[7] Luo Jiangtao, Shu Zhonglin, Zhou Yunfeng, et al. Monitoring system of urban population traffic based on mobile network signaling[C] //Proc of IEEE/CIC International Conference on Communications in China. Piscataway, NJ:IEEE Press, 2014:339-343.
[8] 赖见辉, 陈艳艳, 钟园, 等. 基于手机定位信息的地铁乘客出行路径辨识方法[J] . 计算机应用, 2013, 33(2):583-586.
[9] Bloch A, Erdin R, Meyer S, et al. Battery-efficient transportation mode detection on mobile devices[C] // Proc of the 16th IEEE International Conference on Mobile Data Management. Piscataway, NJ:IEEE Press, 2015:185-190.
[10] Wang Huayong, Calabrese F, Lorenzo G D, et al. Transportation mode inference from anonymized and aggregated mobile phone call detail records[C] // Proc of the 13th IEEE International Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE Press, 2010:318-323.
[11] Ester M, Kriegel, H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C] //Proc of International Conference on Knowledge Discovery and Data Mining. Palo Alto, CA:AAAI Press, 1996:226-231.
[12] 张博. 基于手机网络定位的OD调查的出行方式划分研究[D] . 北京:北京交通大学, 2010.
[13] 冯冲. 基于移动定位数据的用户出行模式识别[D] . 昆明:昆明理工大学, 2011.
收稿日期 2017/4/11
修回日期 2017/5/25
页码 2311-2314
中图分类号 U491.1
文献标志码 A