《计算机应用研究》|Application Research of Computers

基于小波和PCA的自适应颜色空间彩色图像去噪

Color image denoising based on wavelet and PCA in adaptive color space

免费全文下载 (已被下载 次)  
获取PDF全文
作者 兰小艳,陈莉,贾建,李熠晨
机构 西北大学 a.信息科学与技术学院;b.数学学院,西安 710127
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)03-0934-06
DOI 10.3969/j.issn.1001-3695.2018.03.062
摘要 在彩色图像去噪任务中,传统的颜色空间通道之间存在很强的互相关性,使去噪后图像出现颜色突变,影响图像去噪效果。针对该问题,提出一种降低通道之间相关性的颜色空间构造方法。该方法以待去噪图像在小波变换域中系数的聚集特征为依据,利用主成分分析方法确定系数聚集的主方向、次主方向。由主方向和次主方向的基向量确定自适应的颜色空间,在该颜色空间中实现图像去噪。实验结果表明,相比传统的颜色空间,所构造的颜色空间去噪无论在视觉效果、峰值性噪比和稀疏特征保真度上,均取得了更好的去噪效果。
关键词 小波变换;主成分分析;颜色空间;彩色图像去噪
基金项目 国家自然科学基金资助项目(61379010,61502219)
国家科技支撑计划资助项目(2013BAH49F03)
中国博士后科学基金资助项目(2015M582697)
本文URL http://www.arocmag.com/article/01-2018-03-062.html
英文标题 Color image denoising based on wavelet and PCA in adaptive color space
作者英文名 Lan Xiaoyan, Chen Li, Jia Jian, Li Yichen
机构英文名 a.SchoolofInformation&Technology,b.SchoolofMathematics,NorthwestUniversity,Xi'an710127,China
英文摘要 In color image denoising task, there is a strong correlation between color channels, and the correlation makes the denoised image appear color mutation, which affect the image denoising. In order to solve this problem, this paper put forward a method to reduce the mutual correlation between color channels. Based on the wavelet transform domain coefficient that had aggregation characeristics, the method used PCA to determine principal direction and secondary principal direction of coefficient aggregation, an adaptive linear transform space. After that, it used their directions to determine adaptive color space where color image denoising could be achieved.The experimental results show that, this method is better in view of subjective parameters and objective parameters, which contains the peak signal to noise ratio and sparse feature fidelity.
英文关键词 wavelet transform; principal component analysis(PCA); color space; color image denoising
参考文献 查看稿件参考文献
  [1] Guo Ruixu, Zhang Letian. Joint HIS color space based image enhancement under uneven illumination[C] //Advanced Materials Research. 2013:2232-2236.
[2] Ganesan P, Rajini V, Sathish B S, et al. HSV color space based segmentation of region of interest in satellite images[C] //Proc of International Conference on Control, Instrumentation, Communication and Computational Technologies. 2014:101-105.
[3] Ben-Shahar O, Zucher S W. Hue fields and color curvatures:a perceptual organization approach to color image denoising[C] //Proc of IEEE Conference on CVPR. 2003:713-720.
[4] Lei Tao, Wang Yi, Fan Yangyu, et al. Vector morphological operators in HSV color space[J] . Science China Information Sciences, 2013, 56(11):1-12.
[5] Son T N, Hoang T M, Dzung N T, et al. Fast FPGA implementation of YUV-based fractal image compression[C] //Proc of the 5th International Conference on Communications and Electronics. 2014:440-445.
[6] Razazzadeh N, Khalili M. An effective segmentation method for dermoscopy image[C] //Proc of International Conference on Computer and Knowledge Engineering. 2014.
[7] Bae G J, Cho S I, Kim S H, et al. Image denoising considering cha-racteristics of YCbCr color channels[C] //Proc of the 4th Internatio-nal Conference on Consumer Electronics. 2015.
[8] Poynton C A. A technical introduction to digital video[M] . [S. l. ] :Wiley, 1996. [9] Pizurica A, Philips W. Estimating the probability of the presence of a signal of interest in multiresolution single-and multiband image denoising[J] . IEEE Trans on Image Processing, 2006, 15(3):654-665.
[10] Chan T F, Kang S H, Shen Jianhong. Total variation denoising and enhancement of color images based on the CB and HSV color models[J] . Journal of Visual Communication and Image Representation, 2001, 12(4):422-435.
[11] Rodyushkin K V, Chiudinovich B M. Face tracking:US, 7492924 B2[P] . 2009.
[12] Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3D transform-domain collaborative filtering[J] . IEEE Trans on Image Processing, 2007, 16(8):2080-2095.
[13] Gayathri A, Srinivasan A. Wavelet based self learning adaptive dictionary algorithm for image denoising[J] . Advances in Natural and Applied Sciences, 2015, 9(9 SE):7-18.
[14] Khmag A, Ramli A R, Al-Haddad S A R, et al. Denoising of natural image based on non-linear threshold filtering using discrete wavelet transformation[J] . International Review on Computers and Software, 2014, 9(8):1348-1357.
[15] Liu Qian, Zhang Caiming, Guo Qiang, et al. Adaptive sparse coding on PCA dictionary for image denoising[J] . The Visual Computer, 2016, 32(4):535-549.
[16] Du Wenliao, Zhu Ruming, Li Yanming. Adaptive selection of optimal decomposition level in filtering algorithm based on wavelet transform[J] . Journal of Optoelectronics, 2010(9):1408-1411.
[17] Donoho D L. Denoising by soft-thresholding[J] . IEEE Trans on Information Theory, 1995, 41(3):613-627.
[18] Chang S G, Yu B, Vetterli M. Spatially adaptive processing[J] . Chicago, 1998, 10:535-539.
[19] Zheng Jun, Jing Z. Image feature extraction of electrical wavelet thresholding with context modeling for image denoising[C] //Proc of the 5th IEEE International Conference on Image Powerequipment Based on Second Generation Wavelet Transform. 2003:98-10.
[20] Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[J] . Journal of American Statistical Association, 1995, 90(432):1200-1224.
[21] Zhang Yanshen. Optimal estimation and engineering application[M] . Beijing:Yuhang Publishing House, 1991.
收稿日期 2016/9/16
修回日期 2016/10/31
页码 934-939
中图分类号 TN911.73
文献标志码 A