《计算机应用研究》|Application Research of Computers

基于GHZ态的量子密钥分发协议

Quantum key distribution protocol based on GHZ state

免费全文下载 (已被下载 次)  
获取PDF全文
作者 江英华,张仕斌,昌燕,杨帆,邵婷婷
机构 成都信息工程大学 信息安全工程学院,成都 610225
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)03-0889-03
DOI 10.3969/j.issn.1001-3695.2018.03.052
摘要 在用户与用户进行量子密钥分发时,随着用户数量的增加,用户之间需要建立大量的量子传输信道。针对减少量子传输信道数量问题进行了研究,设计了一种基于GHZ态的量子密钥分发协议。该协议由第三方进行粒子分配,利用三粒子GHZ态在Z基和X基下具有不同的表示特性作为密钥分发的关键点来实现密钥分发,大大减少了量子信道的数量。经过安全性分析表明协议能抵御截获重发攻击、中间人攻击和纠缠攻击,而作为第三方可以是不可信的。
关键词 量子密钥分发;GHZ态;纠缠特性;X基;第三方
基金项目 国家自然科学基金资助项目(61572086,61402058)
四川省量子安全通信团队资助项目(sc2016009)
本文URL http://www.arocmag.com/article/01-2018-03-052.html
英文标题 Quantum key distribution protocol based on GHZ state
作者英文名 Jiang Yinghua, Zhang Shibin, Chang Yan, Yang Fan, Shao Tingting
机构英文名 CollegeofInformationSecurityEngineering,ChengduUniversityofInformationTechnology,Chengdu610225,China
英文摘要 As the number of users increases, between users need to set up a large number of quantum transmission channel when the quantum key is distributed. Based on the problem of reducing the number of quantum transmission channels, this paper proposed a quantum key distribution protocol based on GHZ state.The protocol did the particle distribution by the third party. By using three-particle GHZ states under the Z and X had the characteristics of different representations as a key point to realize key distribution, greatly reduced the number of the quantum channel.Through security analysis, this protocol can resist intercepted retransmission attacks, man-in-the-middle attacks, and entangled attacks, and can be untrusted as a third part.
英文关键词 quantum key distribution; GHZ state; entanglement property; X basis; the third part
参考文献 查看稿件参考文献
  [1] Bennett C H, Brassard G. Quantum cryptography:public key distribution and coin tossing[C] //Proc of IEEE International Conference on Computers Systems and Signal Processing. 1984:175-179.
[2] Bennett C H. Quantum cryptography using any two nonorthogonal states[J] . Physical Review Letters, 1992, 68(21):3121-3124.
[3] Ekert A K. Quantum cryptography based on Bell’s theorem[J] . Physical Review Letters, 1991, 67(6):661-663.
[4] Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bell’s theorem[J] . Physical Review Letters, 1992, 68(5):557-559.
[5] 曾文杰, 周南润, 曾贵华. 基于隐形传态的跨中心量子身份认证方案[J] . 光电子·激光, 2005, 16(1):94-97.
[6] 杨宇光, 张兴. 利用秘密共享的多方同时量子身份认证[J] . 中国科学:物理学 力学 天文学, 2008(2):165-170.
[7] 李渊华, 刘俊昌, 聂义友. 基于W态的跨中心量子网络身份认证方案[J] . 光子学报, 2010, 39(9):1616-1620.
[8] Shi J H, Zhang S L, Zhang H L, et al. One-insider attack of quantum secret sharing protocol with collective eavesdropping check[J] . Quantum Information Processing, 2014, 13(1):33-42.
[9] Chen R K, Zhang Y Y, Shi J H, et al. A multiparty error-correcting method for quantum secret sharing[J] . Quantum Information Processing, 2014, 13(1):21-31.
[10] Shi Weimin, Zhang Janbiao, Zhou Yihua, et al. A non-interactive quantum deniable authentication protocol based on asymmetric quantum cryptography[J] . Optik:International Journal for Light and Electron Optics, 2016, 127(20):8693-8697.
[11] Tsai C W, Hwang T. Multi-party quantum secret sharing based on two special entangled states[J] . Science China Physics, Mechanics & Astronomy, 2012, 55(3):460-464.
[12] 谢朝任, 蔡家纬, 黄宗立. Quantum secret sharing using GHZ-like state[J] . 理论物理, 2010, 54(12):1019-1022.
[13] Liu Wenjie, Liu Chao, Liu Zhihao, et al. Erratum to:same initial states attack in Yang et al. ’s quantum private comparison protocol and the improvement[J] . International Journal of Theoretical Physics, 2014, 53(3):271-276.
[14] Chen Y T, Hwang T. Comment on the “quantum private comparison protocol based on bell entangled states”[J] . International Journal of Theoretical Physics, 2014, 53(3):837-840.
[15] Wang Yukun, Zhang Jie, Huang Wei, et al. A quantum private comparison protocol with splitting information carriers[J] . International Journal of Theoretical Physics, 2015, 54(1):281-291.
[16] Wang Ding, He Debiao, Wang Ping, et al. Anonymous two-factor authentication in distributed systems:certain goals are beyond attainment[J] . IEEE Trans on Dependable and Secure Computing, 2015, 12(4):428-442.
[17] Wang Ding, Wang Ping. Two birds with one stone:two-factor authentication with security beyond conventional bound[J] . IEEE Trans on Dependable and Secure Computing, 2016, PP(99):1-22.
收稿日期 2016/11/29
修回日期 2017/1/10
页码 889-891
中图分类号 TN918.1
文献标志码 A