《计算机应用研究》|Application Research of Computers

基于处理器时空势场修正的多城市拥堵并行聚类分析

Parallel clustering analysis of multi-city congestion based on multi-processor and space potential field modification

免费全文下载 (已被下载 次)  
获取PDF全文
作者 黄杰,余长庚
机构 贺州学院 机械与电子工程学院,广西 贺州 542899
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)03-0820-05
DOI 10.3969/j.issn.1001-3695.2018.03.037
摘要 为提升城市道路拥堵检测和治理效率,提出一种基于多处理器时空势场修正的城市道路拥堵并行聚类分析方法。在建立城市道路拥堵GIS四维空间时态数据时空模型基础上,利用并行欧氏距离矩阵计算、并行邻域半径计算和并行密度指标计算,构建势场修正法多处理器并行聚类方法;给出了上述并行计算过程的复杂度定理,在理论上定性分析了算法的计算复杂度;最后,以北京市为实验区,对所提城市道路拥堵分析算法性能进行了验证。实验结果表明,所提方法可实现城市道路拥堵情况的快速有效检测分析,可为城市道路拥堵管理提供数据支撑。
关键词 势场修正;时空分析;并行聚类;多处理器;交通拥堵
基金项目 国家自然科学基金资助项目(61540055)
深圳市富强光学科技有限公司开发项目(YS2015228)
贺州学院博士科研启动基金资助项目(HZUBS201506)
广西高校中青年教师基础能力提升项目(KY2016YB454)
本文URL http://www.arocmag.com/article/01-2018-03-037.html
英文标题 Parallel clustering analysis of multi-city congestion based on multi-processor and space potential field modification
作者英文名 Huang Jie, Yu Changgeng
机构英文名 CollegeofMechanical&ElectronicEngineering,HezhouUniversity,HezhouGuangxi542899,China
英文摘要 In order to improve the urban traffic congestion detection and control efficiency, this paper proposed a new clustering analysis method based on multi-processor and space potential field modification for traffic congestion analysis. Firstly, based on the city road congestion spatial-temporal model with GIS four-dimensional spatial temporal data, this paper constructed field correction method for multi-processor parallel clustering method by using parallel Euclidean distance matrix computation, parallel neighborhood radius computing and parallel density index calculation. Secondly, it gave the complexity theorems of the parallel computation procedure, so as to theoretically analysis the computational complexity of the algorithm. Finally, taking Beijing city as a test area, it verified the performance of the algorithm in analyzing the traffic congestion. Experimental results show that the method can achieve effective detection for rapid analysis of urban traffic congestion, which can provide data support for traffic congestion management.
英文关键词 potential field correction; spatial and temporal analysis; parallel clustering; multi-processor; traffic congestion
参考文献 查看稿件参考文献
  [1] Lopez-Garcia P, Onieva E, Osaba E, et al. A hybrid method for short-term traffic congestion forecasting using genetic algorithms and cross entropy[J] . IEEE Trans on Intelligent Transportation Systems, 2016, 17(2):557-569.
[2] 孙景昊, 关楠, 邓庆绪, 等. 城市交通网络信号控制系统的实时演算模型[J] . 软件学报, 2016, 27(3):527-546.
[3] Sundar R, Hebbar S, Golla V. Implementing intelligent traffic control system for congestion control, ambulance clearance, and stolen vehicle detection[J] . IEEE Sensors Journal, 2014, 15(2):1109-1113. [4] 韩祥临, 欧阳成, 宋涛, 等. 交通拥堵相变问题的同伦分析法[J] . 物理学报 , 2013, 62(17):170203.
[5] Kim G, Ong Y S, Cheong T, et al. Solving the dynamic vehicle routing problem under traffic congestion[J] . IEEE Trans on Intelligent Trans portation Systems, 2016, 17(8):2367-2380.
[6] Khademi N, Rajabi M, Mohaymany A S, et al. Day-to-day travel time perception modeling using an adaptive-network-based fuzzy infe-rence system(ANFIS)[J] . EURO Journal on Transportation and Logistics, 2016, 5(1):25-52.
[7] Li Yongfu, Jiang Xiao, Zhu Hao, et al. Multiple measures-based chaotic time series for traffic flow prediction based on Bayesian theory[J] . Nonlinear Dynamics, 2016, 85(1):179-194.
[8] Liu Zhao, Liu Yanheng, Wang Jian, et al. Modeling and simulating traffic congestion propagation in connected vehicles driven by temporal and spatial preference[J] . Wireless Networks, 2016, 22(4):1121-1131.
[9] Sun Zhanquan, Li Zhao, Zhao Yanling. Traffic congestion forecasting based on possibility theory[J] . International Journal of Intelligent Transportation Systems Research, 2016, 14(2):85-91.
[10] Adekiigbe A, Bakar K A. Implementing congestion avoidance mechanism in cluster based routing protocol for wireless mesh client networks[J] . Wireless Personal Communications, 2015, 81(2):725-743.
[11] Xia Jingxin, Huang Wei, Guo Jianhua. A clustering approach to online freeway traffic state identification using ITS data[J] . KSCE Journal of Civil Engineering, 2012, 16(3):426-432.
[12] Farouk A, El-Boghdadi H M. A cost-efficient congestion management methodology for fat-trees using traffic pattern detection[J] . Journal of Supercomputing, 2015, 71(4):1249-1276.
[13] 鲁小丫, 宋志豪, 徐柱, 等. 利用实时道路状况数据聚类方法检测城市道路拥堵路段[J] . 地球信息科学学报, 2012, 14(6):775-780.
[14] 肖飞, 刘全, 傅启明, 等. 基于自适应势函数塑造奖赏机制的梯度下降Sarsa(λ)算法[J] . 通信学报, 2013, 34(1):77-88.
[15] Bubenchikov A M, Bubenchikov M A, Potekaev A I, et al. The potential field of carbon bodies as a basis for sorption properties of bar-rier gas systems[J] . Russian Physics Journal, 2015, 58(7):882-888.
[16] Ester M, Kricgcl H P, Sander J, et al. A density based algo-rithm for discovering clusters in large spatial databases with noise[C] //Proc of the 4th International Conference on Knowledge Discovery and Data Mining. 1996:226-231.
收稿日期 2016/10/26
修回日期 2016/12/21
页码 820-824
中图分类号 TP391
文献标志码 A