《计算机应用研究》|Application Research of Computers

室内停车专题地图的形状规则化方法

Shape regularization method of indoor parking theme map

免费全文下载 (已被下载 次)  
获取PDF全文
作者 呙维,王绪滢,饶菁,朱欣焰,李灿
机构 1.武汉大学 测绘遥感信息工程国家重点实验室,武汉 430079;2.地球空间信息技术协同创新中心,武汉 430079
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)03-0811-06
DOI 10.3969/j.issn.1001-3695.2018.03.035
摘要 针对当前室内停车专题地图的制作过程中因人工采集误差而导致的墙面等线状要素的锯齿现象,以及停车位面状要素的对齐等问题进行了研究,在现有研究中针对建筑物轮廓进行规则化校正(如直角化、正交化等)的基础上,提出了一种室内停车专题地图的形状规则化方法。在线状要素规则化校正过程中,首先将线段打断,并记录点间拓扑关系,最后采用深度遍历法修正坐标。在水平停车位对齐过程中,采用遍历坐标并修正的方法;在倾斜停车位对齐过程中,首先计算各边斜率,并计算符合校正条件的停车位中心点在基准斜率直线下的投影坐标,最后采用仿射变换法计算坐标。实验表明,该算法的校正精度高达95%以上,基本实现校正目标,提升了室内停车专题地图的生产效率。
关键词 平滑锯齿;地图矢量化;深度遍历;地图投影
基金项目 国家“973”计划资助项目(2016YFB0502203)
国家自然科学基金资助项目(41301517)
本文URL http://www.arocmag.com/article/01-2018-03-035.html
英文标题 Shape regularization method of indoor parking theme map
作者英文名 Guo Wei, Wang Xuying, Rao Jing, Zhu Xinyan, Li Can
机构英文名 1.StateKeyLaboratoryofInformationEngineeringinSurveying,Mapping&RemoteSensing,WuhanUniversity,Wuhan430079,China;2.CollaborativeInnovationCenterofGeospatialTechnology,Wuhan430079,China
英文摘要 This paper was based on problems of linear elements’ jaggedness and unaligned parking spaces. These linear elements’ jaggedness were caused by artificial acquisition errors such as walls, polygons and so on. The problem of unaligned parking spaces arose in the process of the current production of the indoor parking map. For regulating the external contours of buildings such as the rectangularity, the orthogonalization and so on, this paper presented a shape regularization method of indoor parking thematic maps. This method minimizes the influence of topological relations among elements in maps furthest. In the process of linear elements’ regulation correction, it interrupted lines first and recorded the topological relation between points. Finally, it corrected coordinates by using the depth traversal. In the process of horizontal parking spaces’ alignment, it traversed and corrected coordinates. In the process of slant parking spaces’ alignment, it computed slopes of each side first and computed eligible parking spaces’ center’s projection coordinate under the straight line with the fiducial slope. Finally, it computed coordinates by affine transformation. The experiment shows that this algorithm’s accuracy is as high as 95%. Also, it achieves the goal of the correction basically which enhances the efficiency of making parking maps.
英文关键词 smooth jaggedness; map vectorization; depth traversal; map projection
参考文献 查看稿件参考文献
  [1] 许华燕, 李志辉, 王金月. 室内地图应用现状及展望[J] . 测绘通报, 2014(9):119-121.
[2] 张兰, 王光霞, 袁田, 等. 室内地图研究初探[J] . 测绘与空间地理信息, 2013, 36(9):43-47.
[3] Lorenz B, Ohlbach H J, Stoffel E P. Ahybrid spatial Model for representing indoor environ ments[C] //Proc of the 6th International Sympasium on Web and Wireless Geographical Information Systems. Berlin:Springer, 2006:102-112.
[4] 邓晨. 面向移动终端的室内地图设计与实现[D] . 郑州:信息工程大学, 2015.
[5] 游天, 周成虎, 陈曦. 室内地图表示方法研究与实践[J] . 测绘科学技术学报, 2014, 31(6):635-640.
[6] 孙卫新, 张锦明, 王光霞, 等. 室内地图空间数据矢量化采集方法研究[J] . 测绘科学技术学报, 2016, 33(2):191-195, 200.
[7] Nossum A S. Indoor tubes a novel design for indoor maps[J] . Cartography and Geographic Information Science, 2011, 38(2):192-200.
[8] 刘兆宏, 王科, 丰江帆, 等. 矢量室内地图建模与制作方法[J] . 数字通信, 2012, 39(4):77-80.
[9] 应申, 朱利平, 李霖, 等. 基于室内空间特征的室内地图表达[J] . 导航定位学报, 2015, 3(4):74-78, 91.
[10] 朱欣焰, 杨龙龙, 呙维, 等. 面向全息位置地图的室内空间本体建模[J] . 地理信息世界, 2015, 22(2):1-7.
[11] Nossum A S. Developing a framework for describing and computing indoor maps[J] . The Cartographic Journal, 2013, 50(3):218-224.
[12] Lorenz B, Ohlbach H J, Stoffel E P. A hybrid spatial model for representing indoor environments[C] //Proc of International Symposium on Web and Wireless Geographical Information Systems. 2006:102-112.
[13] 冯小刚, 杜军威. 适用于反向寻车的停车场地图设计[J] . 电脑知识与技术, 2014, 20(36):8692-8694.
[14] 远经潮. 基于Android平台的停车系统设计与实现[D] . 兰州:兰州大学, 2016.
[15] Awrangjeb M. Using point cloud data to identify, trace and regularize the outlines of buildings[J] . International Journal of Remote Sensing, 2016, 37(3):551-579.
[16] 徐景中, 姚芳. LIDAR点云中多层屋顶轮廓线提取方法研究[J] . 计算机工程与应用, 2010, 46(32):141-143.
[17] 沈蔚, 李京, 陈云浩, 等. 基于LIDAR数据的建筑轮廓线提取及规则化算法研究[J] . 遥感学报, 2008, 12(5):692-698.
[18] 张阳阳, 门林杰, 李向伟. 基于机载LiDAR数据的建筑物轮廓规则化方法[J] . 测绘工程, 2015, 24(10):59-61, 76.
[19] Sampath A, Shan J. Building boundary tracing and regularization from airborne lidar point clouds[J] . Photogrammetric Engineering and Remote Sensing, 2007, 73(7):805-812.
[20] Chen D, Zhang Liqiang, Mathiopoulos P T, et al. A methodology for automated segmentation and reconstruction of urban 3-D buildings from ALS point clouds[J] . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(10):4199-4217.
[21] Awrangieb M, Zhang Chunsun, Fraser C S. Automatic extraction of building roofs using LIDAR data and multispectral imagery[J] . ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 83:1-18.
[22] 石军南, 刘建聪, 孙华, 等. 矢量线条概率中值平滑算法设计[J] . 中南林业科技大学学报, 2011, 31(11):1-6, 218.
[23] 胡荣, 未召弟, 符杨. 基于深度优先遍历算法的配电网拓扑动态检测[J] . 上海电力学院学报, 2010, 26(2):109-112, 118.
[24] 李美娟, 李立瑞. 仿射变换模型在地形图坐标转换中的应用[J] . 勘察科学技术, 2009, 26(1):52.
[25] 刘军. 浅析算法设计与算法时间复杂度[J] . 电脑知识与技术, 2008, 2(14):878-879.
收稿日期 2017/5/5
修回日期 2017/6/22
页码 811-816
中图分类号 TP391.41
文献标志码 A