《计算机应用研究》|Application Research of Computers

基于视觉的同时定位与地图构建的研究进展

Survey on vision-based simultaneous localization and mapping

免费全文下载 (已被下载 次)  
获取PDF全文
作者 陈常,朱华,由韶泽
机构 中国矿业大学 机电工程学院,江苏 徐州 221008
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)03-0641-07
DOI 10.3969/j.issn.1001-3695.2018.03.001
摘要 基于视觉的同时定位与地图构建(VSLAM)是目前机器人定位方面的热门研究课题,在机器人自身的定位以及场景识别、任务执行、路径规划等方面发挥着重要的作用。针对VSLAM的应用领域和发展趋势进行总结和归纳,分析了VSLAM的基本原理;在此基础上,从间接法和直接法两个方面对VSLAM关键技术和最新的研究进展进行了阐述,对比分析不同方法的优点和实现难点。最后展望了VSLAM的未来发展趋势和研究方向。
关键词 同时定位与地图构建;特征匹配;闭环检测;机器人;计算机视觉;多视图几何
基金项目 国家“863”计划资助项目(2012AA041504)
本文URL http://www.arocmag.com/article/01-2018-03-001.html
英文标题 Survey on vision-based simultaneous localization and mapping
作者英文名 Chen Chang, Zhu Hua, You Shaoze
机构英文名 SchoolofMechatronicEngineering,ChinaUniversityofMining&Technology,XuzhouJiangsu221008,China
英文摘要 Vision-based simultaneous location and mapping(VSLAM)is a popular research topic in robot positioning area. It plays a significant role in robot positioning and scene recognition, task execution, path planning. This paper summarized the application areas and development trends of VSLAM, and analyzed the fundamental principle of VSLAM. On this basis, it surveyed the key technologies and latest research progress of VSLAM from indirect and direct methods, and discussed the compa-rative advantages and the implementation difficulties of different methods. Finally, it prospected the future development trend and research direction of VSLAM.
英文关键词 simultaneous localization and mapping; feature alignment; loop detection; robot; computer vision; multiple view geometry
参考文献 查看稿件参考文献
  [1] Durrant-Whyte H, Bailey T. Simultaneous localization and mapping:part I[J] . IEEE Robotics & Automation Magazine, 2006, 13(2):99-110.
[2] Bailey T, Durrant-Whyte H. Simultaneous localization and mapping(SLAM):part Ⅱ[J] . IEEE Robotics & Automation Magazine, 2006, 13(3):108-117.
[3] 何俊学, 李战明. 基于视觉的同时定位与地图构建方法综述[J] . 计算机应用研究, 2010, 27(8):2839-2844.
[4] Pollefeys M, Van Gool L, Vergauwen M, et al. Visual modeling with a hand-held camera[J] . International Journal of Computer Vision, 2004, 59(3):207-232.
[5] Jung J, Choi S, Choi H T, et al. Localization of AUVs using depth information of underwater structures from a monocular camera[C] //Proc of the 13th International Conference on Ubiquitous Robots and Ambient Intelligence. 2016:444-446.
[6] 王宏健, 王晶, 边信黔, 等. 基于组合EKF的自主水下航行器SLAM[J] . 机器人, 2012, 34(1):56-64.
[7] 姜岩, 赵熙俊, 龚建伟, 等. 简单城市环境下地面无人驾驶系统的设计研究[J] . 机械工程学报, 2012, 48(20):103-112.
[8] Lategahn H, Geiger A, Kitt B. Visual SLAM for autonomous ground vehicles[C] //Proc of IEEE International Conference on Robotics and Automation. 2011:1732-1737.
[9] 马跃龙, 赵勇, 曹雪峰. 一种基于单目SLAM的无人机序列图像拼接方法[J] . 系统仿真学报, 2016, 28(10):2349-2355.
[10] Engel J, Sturm J, Cremers D. Camera-based navigation of a low-cost quadrocopter[C] //Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012:2815-2821.
[11] 毛曙源. 室内移动机器人自定位方法研究[D] . 杭州:浙江大学, 2016.
[12] Vaussard F, Fink J, Bauwens V, et al. Lessons learned from robotic vacuum cleaners entering the home ecosystem[J] . Robotics and Autonomous Systems, 2014, 62(3):376-391.
[13] Scaramuzza D, Fraundorfer F. Visual odometry[J] . IEEE Robotics & Automation Magazine, 2011, 18(4):80-92.
[14] Fraundorfer F, Scaramuzza D. Visual odometry:part Ⅱ:matching, robustness, optimization and applications[J] . IEEE Robotics & Automation Magazine, 2012, 19(2):78-90.
[15] Kummerle R, Grisetti G, Strasdat H, et al. G2O:a general framework for graph optimization[C] //Proc of IEEE International Confe-rence on Robotics and Automation. 2011:3607-3613.
[16] Hess W, Kohler D, Rapp H, et al. Real-time loop closure in 2D LIDAR SLAM[C] //Proc of IEEE International Conference on Robotics and Automation. 2016:1271-1278.
[17] Davison A J, Reid I D, Molton N D, et al. MonoSLAM:real-time single camera SLAM[J] . IEEE Trans on Pattern Analysis & Machine Intelligence, 2007, 29(6):1052-1067.
[18] Klein G, Murray D. Parallel tracking and mapping for small AR workspaces[C] //Proc of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. [S. l. ] :IEEE Computer Society, 2007:1-10.
[19] Mur-Artal R, Montiel J M M, Tardós J D. ORB-SLAM:a versatile and accurate monocular SLAM system[J] . IEEE Trans on Robo-tics, 2015, 31(5):1147-1163.
[20] Newcombe R A, Lovegrove S J, Davison A J. DTAM:dense tracking and mapping in real-time[C] //Proc of IEEE International Conference on Computer Vision. 2011:2320-2327.
[21] Forster C, Pizzoli M, Scaramuzza D. SVO:fast semi-direct monocular visual odometry[C] //Proc of IEEE International Conference on Robotics and Automation. 2014:15-22.
[22] Engel J, Schps T, Cremers D. LSD-SLAM:large-scale direct monocular SLAM[C] //Proc of the 13th European Conference on Computer Vision. Berlin:Springer, 2014:834-849.
[23] Engel J, Koltun V, Cremers D. Direct sparse odometry[J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, PP(99):1.
[24] Hartley R, Zisserman A. Multiple view geometry in computer vision[M] . Cambridge:Cambridge University Press, 2004.
[25] Shi Jianbo, Tomasi C. Good features to track[C] //Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1994:593-600.
[26] Davison A J. Real-time simultaneous localisation and mapping with a single camera[C] //Proc of IEEE International Conference on Computer Vision. 2003:1403-1410.
[27] Meltzer J, Gupta R, Yang M H, et al. Simultaneous localization and mapping using multiple view feature descriptors[C] //Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2004:1550-1555.
[28] Jeong W Y, Lee K M. CV-SLAM:a new ceiling vision-based SLAM technique[C] //Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2005:3195-3200.
[29] Rosen D M, Kaess M, Leonard J J. An incremental trust-region method for robust online sparse least-squares estimation[C] //Proc of IEEE International Conference on Robotics and Automation. 2012:1262-1269.
[30] Strasdat H, Montiel J M M, Davison A J. Real-time monocular SLAM:why filter?[C] //Proc of IEEE International Conference on Robotics and Automation. 2010:2657-2664.
[31] Mouragnon E, Lhuillier M, Dhome M, et al. Real-time localization and 3D reconstruction[C] //Proc of IEEE Computer Society Confe-rence on Computer Vision and Pattern Recognition. Washington DC:IEEE Computer Society, 2006:363-370.
[32] Rosten E, Drummond T. Machine learning for high-speed corner detection[C] //Proc of European Conference on Computer Vision. [S. l. ] :Springer-Verlag, 2006:430-443.
[33] Huber P J. Robust statistics[J] . Journal of the American Statistical Association, 2011, 78(381):1248-1251.
[34] Weiss S, Achtelik M W, Lynen S, et al. Monocular vision for long-term micro aerial vehicle state estimation:a compendium[J] . Journal of Field Robotics, 2013, 30(5):803-831.
[35] Herrera C D, Kim K, Kannala J, et al. DT-SLAM:deferred triangulation for robust SLAM[C] //Proc of IEEE 3DV. 2014:609-616.
[36] Tan Wei, Liu Haomin, Dong Zilong, et al. Robust monocular SLAM in dynamic environments[C] //Proc of IEEE International Symposium on Mixed and Augmented Reality. 2013:209-218.
[37] Liu Haomin, Zhang Guofeng, Bao Hujun. Robust keyframe-based monocular SLAM for augmented reality[C] //Proc of IEEE International Symposium on Mixed and Augmented Reality. [S. l. ] :IEEE Computer Society, 2016:1-10.
[38] 王可. 基于变分模型的移动机器人三维环境建模方法研究[D] . 北京:北京工业大学, 2016.
[39] Galvez-López D, Tardos J D. Bags of binary words for fast place re-cognition in image sequences[J] . IEEE Trans on Robotics, 2012, 28(5):1188-1197.
[40] Strasdat H, Montiel J M M, Davison A J. Scale drift-aware large scale monocular SLAM[C] //Proc of Robotics:Science and Systems VI. 2010.
[41] Strasdat H, Davison A J, Montiel J M M, et al. Double window optimisation for constant time visual SLAM[C] //Proc of IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2011:2352-2359.
[42] Mei C, Sibley G, Newman P. Closing loops without places[C] //Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010:3738-3744.
[43] Lepetit V, Moreno-Noguer F, Fua P. EPnP:an accurate O(n) solution to the PnP problem[J] . International Journal of Computer Vision, 2009, 81(2):155-166.
[44] Rublee E, Rabaud V, Konolige K, et al. ORB:an efficient alternative to SIFT or SURF[C] //Proc of International Conference on Computer Vision. Washington DC:IEEE Computer Society, 2011:2564-2571.
[45] Mur-Artal R, Tardós J D. ORB-SLAM2:an open-source SLAM system for monocular, stereo and RGB-D cameras[J] . IEEE Trans on Robotics, 2017, 33(5):1255-1262.
[46] Mur-Artal R, Tardós J D. Visual-inertial monocular SLAM with map reuse[J] . IEEE Robotics and Automation Letters, 2017, 2(2):796-803.
[47] Mur-Artal R, Tardos J D. Probabilistic semi-dense mapping from highly accurate feature-based monocular SLAM[C] //Proc of Robo-tics:Science and Systems. 2015.
[48] Bourmaud G, Mégret R. Robust large scale monocular visual SLAM[C] //Proc of IEEE Conference on Computer Vision and Pattern Re-cognition. 2015:1638-1647.
[49] Newcombe R A, Davison A J. Live dense reconstruction with a single moving camera[C] //Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2010:1498-1505.
[50] Stühmer J, Gumhold S, Cremers D. Real-time dense geometry from a handheld camera[C] //Proc of Dagm Conference on Pattern Recognition. [S. l. ] :Springer-Verlag, 2010:11-20.
[51] Pizzoli M, Forster C, Scaramuzza D. REMODE:probabilistic, monocular dense reconstruction in real-time[C] //Proc of IEEE International Conference on Robotics and Automation. 2014:2609-2616.
[52] Engel J, Sturm J, Cremers D. Semi-dense visual odometry for a monocular camera[C] //Proc of IEEE International Conference on Computer Vision. 2013:1449-1456.
[53] Valgaerts L, Bruhn A, Mainberger M, et al. Dense versus sparse approaches for estimating the fundamental matrix[J] . International Journal of Computer Vision, 2012, 96(2):212-234.
[54] Ranftl R, Vineet V, Chen Qifeng, et al. Dense monocular depth estimation in complex dynamic scenes[C] //Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2016.
[55] Silveira G, Malis E, Rives P. An efficient direct approach to visual SLAM[J] . IEEE Trans on Robotics, 2008, 24(5):969-979.
[56] Schops T, Enge J, Cremers D. Semi-dense visual odometry for AR on a smartphone[C] //Proc of IEEE International Symposium on Mixed and Augmented Reality-Media, Arts, Social Science, Humanities and Design. 2014:145-150.
[57] Glover A, Maddern W, Warren M, et al. OpenFABMAP:an open source toolbox for appearance-based loop closure detection[C] //Proc of IEEE International Conference on Robotics and Automation. 2012:4730-4735.
[58] Caruso D, Engel J, Cremers D. Large-scale direct SLAM for omnidirectional cameras[C] //Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2015:141-148.
[59] Engel J, Stückler J, Cremers D. Large-scale direct SLAM with stereo cameras[C] //Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2015:1935-1942.
[60] Usenko V, Engel J, Stuckler J, et al. Reconstructing street-scenes in real-time from a driving car[C] //Proc of International Conference on 3D Vision. 2015:607-614.
[61] Jin Hailin, Favaro P, Soatto S. A semi-direct approach to structure from motion[J] . The Visual Computer, 2003, 19(6):377-394.
[62] Bu Shuhui, Zhao Yong, Wan Gang, et al. Semi-direct tracking and mapping with RGB-D camera for MAV[J] . Multimedia Tools & Applications, 2017, 76(3):1-25.
[63] Baker S, Matthews I. Lucas-Kanade 20 years on:a unifying framework[J] . International Journal of Computer Vision, 2004, 56(3):221-255.
[64] Leutenegger S, Furgale P, Rabaud V, et al. Keyframe-based visual-inertial SLAM using nonlinear optimization[C] //Proc of Robotics:Science and Systems. 2013:789-795.
[65] Leutenegger S, Lynen S, Bosse M, et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J] . International Journal of Robotics Research, 2015, 34(3):314-334.
[66] Comport A I, Malis E, Rives P. Accurate quadrifocal tracking for robust 3D visual odometry[C] //Proc of IEEE International Conference on Robotics and Automation. 2007:40-45.
[67] Kerl C, Sturm J, Cremers D. Dense visual SLAM for RGB-D cameras[C] //Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2013:2100-2106.
[68] Leung C, Huang Shoudong, Dissanayake G. Active SLAM using model predictive control and attractor based exploration[C] //Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2006:5026-5031.
[69] Indelman V, Carlone L, Dellaert F. Planning in the continuous domain:a generalized belief space approach for autonomous navigation in unknown environments[J] . International Journal of Robotics Research, 2015, 34(7):1021-1029.
[70] Jur V D B, Patil S, Alterovitz R. Motion planning under uncertainty using iterative local optimization in belief space[J] . International Journal of Robotics Research, 2012, 31(11):1263-1278.
[71] Clady X, Ieng S H, Benosman R. Asynchronous event-based corner detection and matching[J] . Neural Networks, 2015, 66(C):91-106.
收稿日期 2017/3/7
修回日期 2017/4/16
页码 641-647
中图分类号 TP242.62
文献标志码 A