《计算机应用研究》|Application Research of Computers

基于总变分的MPEG解码算法

Total variation based MPEG decompression algorithm

免费全文下载 (已被下载 次)  
获取PDF全文
作者 肖孝军,陈智斌,文有为
机构 昆明理工大学 理学院,昆明 650500
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2017)09-2825-05
DOI 10.3969/j.issn.1001-3695.2017.09.058
摘要 针对低比特MPEG图像序列出现的压缩痕迹,提出一种后处理正则化方法进行MPEG解码。首先由自适应量化得到一个原始视频DCT系数的量化区间,重建的视频序列投影到此区间内,视频是连续的静止图像,得到耦合时间维度和分离时间维度的两种总变分模型;最后利用经典的原—对偶算法求解提出来的凸优化模型,得到后处理MPEG解码视频序列。实验结果表明,总变分正则化函数能够一定程度上减轻压缩痕迹,提高解码视频的质量。
关键词 MPEG压缩;压缩痕迹;总变分;原—对偶算法
基金项目 国家自然科学基金资助项目(11101193)
本文URL http://www.arocmag.com/article/01-2017-09-058.html
英文标题 Total variation based MPEG decompression algorithm
作者英文名 Xiao Xiaojun, Chen Zhibin, Wen Youwei
机构英文名 FacultyofScience,KunmingUniversityofScience&Technology,Kunming650500,China
英文摘要 Focused on the defect that compression artifacts in low-bit MPEG images sequence, this paper proposed a post-processing technique of regularization to decompress MPEG objection. Firstly, the quantization interval of the DCT coefficients of video original could be gotten because of adaptive quantization, and the reconstructed video sequences were projected onto the interval.Secondly, because of videos were continuous still images sequences, it presented two total variation models that all dimensions were coupled and temporal dimension was decoupled from two spatial dimensions.Finally, it exploited a classical primal-dual algorithm to solve the convex model so as to obtain a post-processing MPEG video sequences. The experimental results demonstrate that the total variation functions can reduce compression artifacts to some extent and improve the quality of the decoded videos.
英文关键词 MPEG compression; compression artifacts; total variation; primal-dual algorithm
参考文献 查看稿件参考文献
  [1] Shen Chuantai, Yen Yuchen, Shin Fengsheu. Deblocking filter for low bit rate MPEG-4 video[J] . IEEE Trans on Circuits and Systems for Video Technology, 2005, 15(6):733-741.
[2] Kong H S, Vetro A, Sun H. Edge map guided adaptive post filter for blocking and ringing artifacts removal[C] //Proc of International Symposium on Circuits and Systems. 2004.
[3] Kocovski B, Kartalov T, Ivanovski Z. An adaptive deblocking algorithm for low bit-rate video[J] . International Sympoium on Communications, Control & Signal Processing, 2008, 82(4):888-893.
[4] Youla D C, Webb H. Image restoration by the method of convex projection[J] . IEEE Trans on Circuits and System, 1982, 1(2):81-94.
[5] Yang Yongyi, Catalatsanos N P, Katsaggelos A K. Regularized reconstruction to reduce blocking artifacts of block discrete cosine transform compressed image[J] . IEEE Trans on Circuits and Systems for Video Technology, 1993, 3(6):421-432.
[6] Holler M, Kunisch K. On infimal convolution of TV-type functionals and applications to video and image reconstruction[J] . SIAM Journal on Imaging Sciences, 2014, 7(4):2258-2300.
[7] Huffman D A. A method for the construction of minimum-redundancy codes[J] . Proceedings of the IRE, 1952, 40(9):1016-1101.
[8] Alter F, Durand S, Froment J. Adapted total variation for artifact free decompression of JPEG images[J] . Journal of Mathematical Imaging and Vision, 2005, 23(2):199-211.
[9] Bredies K, Hohher M. A total-variation based JPEG decompression model[J] . SIAM Journal on Imaging Sciences, 2012, 5(1):366-393.
[10] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J] . Physica D:Nonlinear Phenomena, 1992, 60(1-40):259-268.
[11] Li Chengbo, Yin Wotao, Jiang Hong, et al. An efficient augmented Lagrangian method with applications to total variation minimization[J] . Computational Optimization & Applications, 2013, 56(3):507-530.
[12] Schaeffer H, Yang Y, Osher S. Real-time adaptive video compressive sensing[J] . SIAM Journal of Scientific Computing, 2015, 37(6):980-1001.
[13] Esser E, Zhang Xiaoqun, Chan T F. A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science[J] . SIAM Journal on Imaging Sciences, 2010, 3(4):1015-1046.
[14] Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging[J] . Journal of Mathematical Imaging and Vision, 2011, 40(1):120-145.
[15] He Bingsheng, Yuan Xiaoming. Convergence analysis of primal-dual algorithms for a saddle-point problem[J] . SIAM Journal on Imaging Sciences, 2012, 5(1):119-149.
收稿日期 2016/6/14
修回日期 2016/7/25
页码 2825-2829
中图分类号 TN919.81
文献标志码 A