《计算机应用研究》|Application Research of Computers

跨系统协同过滤推荐算法的隐私保护技术研究

Privacy-preserving technology research on collaborative filtering recommendation algorithm between systems

免费全文下载 (已被下载 次)  
获取PDF全文
作者 刘国丽,李昂,李艳萍,于丽梅
机构 1.河北工业大学 计算机科学与软件学院,天津 300401;2.河北工业大学廊坊分校,河北 廊坊 065000
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2017)09-2804-04
DOI 10.3969/j.issn.1001-3695.2017.09.053
摘要 针对跨系统协同过滤推荐中用户信息安全问题,提出一个安全计算模型。模型基于安全多方计算理论,使用轻量级分组密码算法LBlock加密第三方提供的数据,并用RSA密码系统管理密钥。以该模型为安全基础,结合随机扰乱技术,提出一种跨系统协同过滤推荐算法,其相似度计算方法可以有效防止不良商家伪造商品评分信息;安全矢量积的引入使得第三方与系统无法进行非法串通。实验证明,算法在防止用户信息泄露给协同推荐系统的同时,计算用户相似度更加精确,预测误差也显著降低。
关键词 协同过滤推荐;隐私保持;安全多方计算;随机扰动;相似度
基金项目 河北省高等学校科学技术研究项目(ZD20131070)
本文URL http://www.arocmag.com/article/01-2017-09-053.html
英文标题 Privacy-preserving technology research on collaborative filtering recommendation algorithm between systems
作者英文名 Liu Guoli, Li Ang, Li Yanping, Yu Limei
机构英文名 1.SchoolofComputerScience&Engineering,HebeiUniversityofTechnology,Tianjin300401,China;2.LangfangBranch,HebeiUniversityofTechnology,LangfangHebei065000,China
英文摘要 To solve the privacy security problem of the recommendation algorithm between systems, this paper developed a secure computation model based on the theory of secure multi-party computation. The model used LBlock, a lightweight block cipher algorithm, to encrypt the provided data by the third part, and used RSA public key cryptosystem to manage keys of LBlock. Applying this model to the collaborative filtering between systems with randomized perturbation techniques, the paper developed a new algorithm whose calculation method of similarity could protect the system from the attack of artificial users.It used secure vector to prevent the untrusted third party from colluding. Experiments show that algorithm not only has stronger ability to protect the user’s privacy disclosing to the system which is cooperated, but also has better quality of recommendation.
英文关键词 collaborative filter; privacy-preserving; secure multi-party computation; randomized perturbation; similarity
参考文献 查看稿件参考文献
  [1] 张锋, 常会友. 基于分布式数据的隐私保持协同过滤推荐研究[J] . 计算机学报, 2006, 29(8):1487 -1495.
[2] Polat H, Du Wenliang. Privacy-preserving collaborative filtering using randomized perturbation techniques[C] //Proc of the 3rd IEEE Conference on Data Mining. 2003:625-628.
[3] Canny J. Collaborative filtering with privacy[C] //Proc of IEEE Symposium on Security and Privacy. 2002:45-57.
[4] Canny J. Collaborative filtering with privacy via factor analysis[C] //Proc of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieva. 2002:238-245.
[5] 黄创光, 印鉴, 汪静, 等. 不确定近邻的协同过滤推荐算法[J] . 计算机学报, 2010, 33(8):1369-1377.
[6] Kikuchi H, Mochizuki A. Privacy-preserving collaborative filtering using randomized response[C] //Proc of the 6th International Confe-rence on Innovative Mobile and Internet Service in Ubiquitous Computing. Washington DC:IEEE Computer Society, 2012:671-676.
[7] Xiao Xiaokui, Tao Yufei, Chen Minghua. Optimal random perturbation at multiple privacy levels[J] . Proceedings of VLDB Endowment, 2009, 2(1):814-825.
[8] Wu Wenling, Zhang Lei. LBlock:a lightweightblock cipher[C] //Proc of International Conference on Applied Cryptography and Network Security. Berlin:Springer, 2011:327-344.
[9] 冷亚军, 陆青, 梁昌勇. 协同过滤推荐技术综述[J] . 模式识别和人工智能, 2014, 27(8):720-734.
[10] Cheadle C, Cho-Chung Y S, Becker K G, et al. Application of z-score transformation to affymetrixdata[J] . Applied Bioinformatics, 2003, 2(4):209-217.
[11] 郭建胜, 罗伟, 张磊, 等. LBlock码的不可能差分密码性能分析[J] . 电子与信息学报, 2013, 35(6):1516-1519.
[12] 张付志, 刘亭, 封素石. 一种改进的隐私保持协同过滤推荐算法[J] . 计算机工程, 2010, 36(16):126-128.
收稿日期 2016/6/13
修回日期 2016/7/25
页码 2804-2807
中图分类号 TP309.2
文献标志码 A