《计算机应用研究》|Application Research of Computers

基于GHM多小波算法的功耗分析攻击

Power analysis attack based on GHM multiwavelet algorithm

免费全文下载 (已被下载 次)  
获取PDF全文
作者 段晓毅,佘高健,高献伟,方华威,何斯曼,陈东
机构 北京电子科技学院,北京 100070
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2017)09-2777-05
DOI 10.3969/j.issn.1001-3695.2017.09.047
摘要 功耗分析的密钥获取是基于采集的功耗信号,功耗信号的信噪比是影响分析密钥成功率的重要因素,所以噪声能否被有效去除是提高功耗分析成功率的关键,针对该问题引入了基于GHM多小波的预处理方法。该方法首先对功耗曲线进行GHM多小波阈值去噪处理,其目的是最大限度地去除功耗曲线中不相关的噪声,提高功耗曲线中真实信号的信噪比,从而提高攻击效率。在MEGA16微控制器上,采集固定密钥随机明文的ASE算法的功耗曲线,对比原始功耗曲线与去噪后的功耗曲线执行相关功耗分析。实验结果表明,使用去噪后的功耗曲线执行相关功耗分析所需的功耗曲线减少了89.5%,相关系数平均提高了107.9%,验证了新方法的有效性。
关键词 相关功耗分析;AES算法;多小波;去噪
基金项目 北京电子科技学院基金资助项目(328201505,328201508)
北京市自然科学基金资助项目(4163076)
本文URL http://www.arocmag.com/article/01-2017-09-047.html
英文标题 Power analysis attack based on GHM multiwavelet algorithm
作者英文名 Duan Xiaoyi, She Gaojian, Gao Xianwei, Fang Huawei, He Siman, Chen Dong
机构英文名 BeijingElectronic&TechnologyInstitute,Beijing100070,China
英文摘要 In power analysis, key acquisition for power analysis was based on the collected power signal, and one of the most important factors impacting the success rate of key analysis was the signal to noise ratio of real power consumption. So the noise could be effectively removed was the key to improve the success rate of power analysis. To solve this problem, this paper introduced the preprocessing method based on GHM multiwavelet. This method was to denoise power traced by GHM multiwavelet thresholding, with an aim to remove irrelevant noise from the power traces as far as possible, and raise the signal to noise ratio of real signal in the power traces. It collected power traces of AES algorithm in MEGA16 micro controller hardware platform for the same key with different plaintexts and performed correlation power analysis with original power traces and the denoised power traces. Experimental results show that the power traces required for correlation power analysis performed with the denoised power traces is reduced by 89.5%, and the correlation coefficient is raised by 107.9% on average. This verifies the effectiveness of the new method.
英文关键词 correlation power analysis; AES algorithm; multiwavelet; denoising
参考文献 查看稿件参考文献
  [1] Kocher P, Jaffe J, Jun B. Differential power analysis[C] //Advances in Cryptology. Berlin:Springer, 1999:388-397.
[2] Brier E, Clavier C, Olivier F. Correlation power analysis with a lea-kage model[C] //Cryptographic Hardware and Embedded Systems. Berlin:Springer, 2004:8004-8010.
[3] Mayer-Sommer R. Smartly analyzing the simplicity and the power of simple power analysis on smartcards[C] //Cryptographic Hardware and Embedded Systems. Berlin:Springer, 2001:698-700.
[4] Coron J S, Kocher P, Naccache D. Statistics and secret leakage[C] //Financial Cryptography. Berlin:Springer, 2000:157-173.
[5] Specht R, Heyszl J, Kleinsteuber M, et al. Improving non-profiled attacks on exponentiations based on clustering and extracting leakage from multi-channel high-resolution em measurements[C] //Constructive Side-Channel Analysis and Secure Design. [S. l. ] :Springer International Publishing, 2015.
[6] Cagli E, Dumas C, Prouff E. Enhancing dimensionality reduction methods for side-channel attacks[C] //Smart Card Research and Advanced Applications. [S. l. ] :Springer International Publishing, 2015.
[7] Kim Y, Ko H. Using principal component analysis for practical biasing of power traces to improve power analysis attacks[M] //Information Security and Cryptology. Berlin:Springer, 2003:109-120.
[8] 蔡琛, 陈运, 万武南, 等. 基于主成分分析的AES算法相关功耗分析攻击[J] . 电子技术应用, 2015, 41(8):101-105.
[9] Souissi Y, Guilley S, Danger J L, et al. Improvement of power analysis attacks using Kalman filter[C] //Proc of IEEE International Conference on Acoustics, Speech, & Signal Processing. 2010:1778-1781.
[10] Feng Mingliang, Zhou Yongbin, Yu Zhenmei. EMD-based denoising for side-channel attacks and relationships between the noises extracted with different denoising methods[C] //Proc of International Confe-rence on Information and Communications Security. New York:Springer-Verlag, 2013:259-274.
[11] Le T H, Clediere J, Serviere C, et al. Noise reduction in side channel attack using fourth-order cumulant[J] . IEEE Trans on Information Forensics & Security, 2008, 2(4):710-720.
[12] Charvet X, Pelletier H. Improving the DPA attack using wavelet transform[C] //Proc of NIST Physical Security Testing Workshop. 2005.
[13] Souissi Y, Elaabid M A, Debande N, et al. Novel applications of wavelet transforms based side-channel analysis[C] //Proc of Non-Invasive Attack Testing Workshop. 2011.
[14] 黄永远, 陈运, 陈俊, 等. 运用频域辅助分析的AES算法相关功耗攻击[J] . 四川大学学报:自然科学版, 2014, 51(3):459-466.
[15] Liu H, Tsunoo Y, Goto S. Electromagnetic analysis enhancement with signal processing techniques[C] //Information Security and Privacy. Berlin:Springer-Verlag, 2011:456-461.
[16] Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[J] . Journal of the American Statistical Association, 1999, 90(432):1200-1224.
[17] Donoho D L, Johnstone I M, Kerkyacharian G, et al. Wavelet shrinkage:asymptopia?(with discussion)[J] . Journal of the Ro-yal Statistical Society Ser B, 1995, 57:301-369.
[18] Donoho D L. De-noising by soft-thresholding[J] . IEEE Trans on Information Theory, 1995, 41(3):613-627.
[19] Managard S. 能量分析攻击[M] . 北京:科学出版社, 2010.
[20] Chui C K, Lian J A. A study of orthonormal multi-wavelets[J] . Applied Numerical Mathematics, 1996, 20(3):273-298.
[21] Mallat S G. A theory for multiresolution signal decomposition:the wavelet representation[J] . IEEE Trans on Pattern Analysis & Machine Intelligence, 2010, 11(7):674-693.
收稿日期 2016/7/6
修回日期 2016/8/19
页码 2777-2781,2790
中图分类号 TP309.2
文献标志码 A