《计算机应用研究》|Application Research of Computers

两类具有极低自相关性的二元序列

Two classes binary sequences with low autocorrelation

免费全文下载 (已被下载 次)  
获取PDF全文
作者 孙霓刚,汪伟昕
机构 常州大学 信息科学与工程学院,江苏 常州 213164
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2017)09-2773-04
DOI 10.3969/j.issn.1001-3695.2017.09.046
摘要 对两类周期分别为N≡2(mod 4)和N≡0(mod 4)的二元序列的自相关性进行了研究。利用周期为N≡1(mod 4)的平衡二元序列的相关性分布特征构造出上述两类序列的自相关性数值的出现频率,给出了上述两类序列的自相关性只存在固定取值且每个取值出现的频率是一定的。结果表明,这两类序列具有良好的周期自相关性,且自相关分布频率是确定的。因此,此类序列能够有效地消除多径效应产生的影响,在密码学和通信领域具有潜在的应用价值。
关键词 二元序列;自相关性;平衡序列;分布频率
基金项目 国家自然科学基金资助项目(61103172)
本文URL http://www.arocmag.com/article/01-2017-09-046.html
英文标题 Two classes binary sequences with low autocorrelation
作者英文名 Sun Nigang, Wang Weixin
机构英文名 SchoolofInformationScience&Engineering,ChangzhouUniversity,ChangzhouJiangsu213164,China
英文摘要 This paper studied the autocorrelation of two kinds of binary sequences with period N≡2(mod 4) and N≡0(mod 4). Utilizing the correlation of balanced sequences with period N≡1(mod 4), this article obtained the distribution frequency for the autocorrelation of these binary sequences. Also the autocorrelation of these sequences only existed determined values and the frequency of these values was also determined. The results show that such sequences have good autocorrelation property and distribution frequency of the autocorrelation is determine. Therefore, these sequences can eliminate the effect of multipath, which indicates these sequences have strong potential applications in communication systems and cryptography.
英文关键词 binary sequences; autocorrelation; balanced sequences; distribution frequency
参考文献 查看稿件参考文献
  [1] Fan P, Darnell M. Sequence design for communications applications[M] . [S. l. ] :Research Studies Press, 1996.
[2] Helleseth T. Signal design for good correlation:for wireless communication, cryptography[J] . SIAM Review, 2007, 49(1):138-141.
[3] Tang Xiaohu, Ding Cunsheng. New classes of balanced quaternary and almost balanced binary sequences with optimal autocorrelation value[J] . IEEE Trans on Information Theory, 2010, 56(12):6398-6405.
[4] Arasu K T, Ding Cunsheng, Helleseth T, et al. Almost difference sets and their sequences with optimal autocorrelation[J] . IEEE Trans on Information Theory, 2001, 47(7):2934-2943.
[5] Cai Ying, Ding Cunsheng. Binary sequences with optimal autocorrelation[J] . Theoretical Computer Science, 2009, 410(24-25):2316-2322.
[6] Luke H D, Schotten H D, Hadinejad-Mahram H. Binary and quadriphase sequences with optimal autocorrelation properties:a survey[J] . IEEE Trans on Information Theory, 2003, 49(12):3271-3282.
[7] Tang Xiaohu, Gong Guang. New constructions of binary sequences with optimal autocorrelation value/magnitude[J] . IEEE Trans on Information Theory, 2010, 56(3):1278-1286.
[8] Sarwate D. Bounds on cross correlation and autocorrelation of sequences (Corresp. )[J] . IEEE Trans on Information Theory, 1979, 25(6):720 - 724.
[9] Ding Cunsheng, Tang Xiaohu. The cross-correlation of binary sequences with optimal autocorrelation[J] . IEEE Trans on Information Theory, 2010, 56(4):1694-1701.
[10] Yang Yang, Tang Xiaohu, Zhou Zhengchun. The autocorrelation magnitude of balanced binary sequence pairs of prime period with optimal cross-correlation[J] . IEEE Communications Letters, 2015, 19(4):585-588.
[11] Parker M G. Even length binary sequence families with low negaperiodic autocorrelation[M] // Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Berlin:Springer, 2001:200-209.
[12] Storer T. Cyclotomy and difference sets[M] . Chicago:Markham, 1967.
[13] Yang Yang, Tang Xiaohu, Zhou Zhengchun, et al. Binary sequences with optimal odd periodic autocorrelation[C] //Proc of International Symposium on Information Theory. 2015.
[14] Ding Cunsheng, Yin Jianxing. Sets of optimal frequency-hopping sequences[J] . IEEE Trans on Information Theory, 2008, 54(8):3741-3745.
收稿日期 2016/6/29
修回日期 2016/8/16
页码 2773-2776
中图分类号 TP309.2
文献标志码 A