《计算机应用研究》|Application Research of Computers

一类异结构分数阶复杂网络的自适应同步

Synchronization for fractional-order complex networks with different structures via adaptive control

免费全文下载 (已被下载 次)  
获取PDF全文
作者 刘娜,邓玮,方洁,丁国强
机构 郑州轻工业学院 电气学院,郑州 450002
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2017)09-2655-04
DOI 10.3969/j.issn.1001-3695.2017.09.020
摘要 复杂网络结构的复杂性以及节点行为的多样性等因素,使得分数阶复杂网络的同步与控制研究得到了国内外研究者的广泛关注。讨论了异结构分数阶复杂网络的同步问题。应用自适应控制方法设计出一类非常简单的控制器。基于分数阶稳定性理论,选择合适的分数阶参数,推导出两类异结构分数阶复杂网络状态同步的充分条件。仿真结果进一步验证了所设计自适应控制器的有效性,并详细分析了分数阶参数复杂网络同步的影响。
关键词 分数阶;异结构复杂网络;自适应同步
基金项目 国家自然科学基金资助项目(61473128)
河南省联合基金资助项目(U1204603)
河南省高校重点科研资助项目(15A120022)
郑州轻工业学院博士科研基金资助项目(2014BSJJ047)
河南省自然科学资金面上项目(162300410323)
河南省基础与前沿技术研究计划项目(152300410130)
本文URL http://www.arocmag.com/article/01-2017-09-020.html
英文标题 Synchronization for fractional-order complex networks with different structures via adaptive control
作者英文名 Liu Na, Deng Wei, Fang Jie, Ding Guoqiang
机构英文名 SchoolofElectric&InformationEngineering,ZhengzhouUniversityofLightIndustry,Zhengzhou450002,China
英文摘要 The structure complexity of complex networks, the diversity of node behaviors and other factors make that the synchronization and control of fractional-order complex networks have attracted wide attention of researchers both at home and abroad. This paper discussed the synchronization problem for two fractional-order complex networks with different structures. Based on the theory of fractional-order stability, it designed an adaptive controller and an suitable parameter for the fractional order, then some sufficient conditions would be derived to make the two fractional-order complex networks with different structures synchronize. Finally, the numerical simulations verified the feasibility and effectiveness of the research method.
英文关键词 fractional-order; complex networks with different structures; adaptive control
参考文献 查看稿件参考文献
  [1] Kilbas A A, Srivastava H M, Trujillo J J, et al. Theory and applications of fractional differential equations[M] . Amsterdam:North-Holland Mathematics Studies, 2006.
[2] Laskin N. Fractional quantum mechanics[J] . Physical Review E, 2000, 62(3):3135-3145.
[3] Laskin N. Fractional quantum mechanics and Levy path integrals[J] . Physics Letters A, 2000, 268(4):298-305.
[4] Namias V. The fractional order Fourier transform and its application to quantum mechanics[J] . IMA Journal of Applied Mathematics, 1980, 25(3):241-265.
[5] Bagley R L, Calico R A. Fractional order state equations for the control of viscoelastical-lydamped structures[J] . Journal of Guidance Control Dynamics, 1991, 14(2):304-311.
[6] Heymans N, Bauwens J C. Fractal rheological models and fractional differential equations for viscoelastic behavior[J] . Rheologica Acta, 1994, 33(3):210-219.
[7] Tang Yang, Qian Feng, Gao Huijun, et al. Synchronization in complex networks and its application:a survey of recent advances and challenges[J] . Annual Reviews in Control, 2014, 38(2):184-198.
[8] Tang Yang, Fang Jian’an. Synchronization ofN-coupled fractional-order chaotic systems with ring connection[J] . Communications in Nonlinear Science and Numerical Simulation, 2010, 15(2):401-412.
[9] Delshad S S, Asheghan M M, Beheshti M H. Synchronization of N-coupled incommensurate fractional-order chaotic systems with ring connection[J] . Communications in Nonlinear Science and Numerical Simulation, 2011, 16(9):3815-3824.
[10] Wu Xiangjun, Lu Hongtao. Outer synchronization between two diffe-rent fractional-order general complex dynamical network[J] . Chinese Physics B, 2010, 19(7):070511.
[11] Wang Mingjun, Wang Xingyuan, Niu Yujun. Projective synchronization of a complex network with different fractional order chaos nodes[J] . Chinese Physics B, 2011, 20(1):010508. [12] Rakkiyappan R, Cao Jinde, Velmurugan G. Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays[J] . IEEE Trans on Neural Networks and Lear-ning Systems, 2015, 26(1):84-97.
[13] Ma Tiedong, Zhang Jun. Hybrid synchronization of coupled fractional-order complex networks[J] . Neurocomputing, 2015, 157:166-172.
[14] Ma Tiedong, Zhang Jun, Zhou Yongcheng, et al. Adaptive hybrid projective synchronization of two coupled fractional-order complex networks with different sizes[J] . Neurocomputing, 2015, 164:182-189.
[15] 杜洪越, 孙琬双, 胡革. 两个分数阶复杂动态网络的函数投影同步[J] . 自动化学报, 2016(2):226-234.
[16] 杨丽新, 江俊. 分数阶复杂网络的混合投影同步研究[J] . 动力学与控制学报, 2015(1):52-55.
[17] Liang Yi, Wang Xingyuan. Synchronization in complex networks with non-delay and delay couplings via intermittent control with two switched periods[J] . Physica A:Statistical Mechanics and Its Application, 2014, 395(4):434-444.
[18] Liang Yi, Wang Xingyuan. A method of quickly calculating the number of pinning nodes on pinning synchronization in complex networks[J] . Applied Mathematics and Computation, 2014, 246(C):743-751.
[19] 丁风雨, 马维元. 分数阶复杂网络的自适应同步[J] . 应用数学与计算数学学报, 2015, 29(2):222-231.
[20] 张友安, 余名哲, 吴华丽. 基于自适应神经网络的分数阶混沌系统滑模同步[J] . 控制与决策, 2015, 30(5):882-886.
[21] 毛北行, 王战伟. 一类分数阶复杂网络系统的有限时间同步控制[J] . 深圳大学学报:理学版, 2016, 33(1):96-101.
[22] Rakkiyappan R, Velmurugan G, Cao Jinde. Stability analysis of fractional-order complex-valued neural networks with time delays[J] . Chaos, Solitons and Fractals, 2015, 78(1):297-316.
[23] Zhang Shuo, Yu Yongguang, Wang Qing. Stability analysis of fractional-order Hopfield neural networks with discontinuous activation functions[J] . Neurocomputing, 2015, 171(C):1075-1084.
[24] Boroomand A, Menhaj M B. Fractional-order Hopfield neural networks[C] //Lecture Notes in Computer Science, vol 5506. Berlin:Springer, 2008:883-890.
[25] Chen Liping, Chai Yi, Wu Ranchao, et al. Dynamic analysis of a class of fractio-nal-order neural networks with delay[J] . Neurocomputing, 2013, 111(6):190-194.
[26] Wang Junwei, Zhang Yanbin. Network synchronization in a population of star-coupled fractional nonlinear oscillators[J] . Physics Letters A, 2010, 374(13-14):1464-1468.
收稿日期 2016/6/27
修回日期 2016/8/12
页码 2655-2658
中图分类号 TP301.5
文献标志码 A