《计算机应用研究》|Application Research of Computers

机械臂绝对定位精度标定关键技术综述

Review on key technology of manipulator absolute positioning accuracy calibration

免费全文下载 (已被下载 次)  
获取PDF全文
作者 高涵,张明路,张小俊,白丰
机构 1.河北工业大学 机械工程学院,天津 300130;2.哈尔滨工业大学 机器人技术与系统国家重点实验室,哈尔滨 150080
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2017)09-2570-07
DOI 10.3969/j.issn.1001-3695.2017.09.002
摘要 目前我国飞机和卫星装配仍主要采用人工装配,装配技术陈旧、机器人绝对定位精度低等问题难以满足飞机和卫星高精度、高性能的要求,阻碍了工业机器人在航空制造行业的发展。在机器人柔性自动化装配过程中,如何提高机械臂绝对定位精度的标定技术已成为学术界和工业界广泛关注的焦点。为了系统地分析和总结现有的研究成果,对绝对定位精度标定方法进行了分类探讨,归纳了国内外机械臂标定技术的研究现状,详细分析了误差不确定性、冗余参数的消除及最优测量结构选择性等关键技术,并对机械臂绝对定位精度标定技术的未来发展趋势进行了构想和展望。
关键词 机械臂;绝对定位精度;标定;几何参数;非几何参数;不确定
基金项目 国家“863”计划资助项目(2015AA043101)
本文URL http://www.arocmag.com/article/01-2017-09-002.html
英文标题 Review on key technology of manipulator absolute positioning accuracy calibration
作者英文名 Gao Han, Zhang Minglu, Zhang Xiaojun, Bai Feng
机构英文名 1.SchoolofMechanicalEngineering,HebeiUniversityofTechnology,Tianjin300130,China;2.StateKeyLaboratoryofRobotics&System,HarbinInstituteofTechnology,Harbin150080,China
英文摘要 Nowadays, domestic main aircraft and satellites fabrication are still using artificial assembly. Old-fashion assembly technology and low robot absolute position accuracy problems are difficult to satisfy the requirement of high precision, high performance of aircraft and satellite. It hinders the development of industrial robots in aviation manufacturing industry.Thus in the process of robot flexible automated assembly, how to improve the mechanical manipulator absolute positioning accuracy cali-bration technology has become wide focus on academia and industry. In order to systematically analyze and summarize the exi-sting research results, this paper discussed absolute positioning accuracy calibration methods. It summarized the research status of the mechanical arm calibration technology at home and abroad. It analysed key technologies such as the error of uncertainty, elimination of redundant parameters and the optimal measuring structure selectivity. This paper conceived and looked to the future development trends of manipulator absolute positioning accuracy calibration technique.
英文关键词 manipulator; mbsolute positioning accuracy; calibration; geometric parameter; non-geometric parameter; uncertainty
参考文献 查看稿件参考文献
  [1] 周炜. 飞机自动化装配工业机器人精度补偿方法与实验研究[D] . 南京:南京航空航天大学, 2012.
[2] 周炜, 廖文和, 田威. 基于空间插值的工业机器人精度补偿方法理论与试验[J] . 机械工程学报, 2013, 49(3):42-48.
[3] 赵亮. 基于旋量的SCARA 工业机器人精度研究[D] . 杭州:浙江大学, 2011.
[4] 王琨, 骆敏舟, 曹毅, 等. 基于遗传算法的串联机械臂运动学参数标定[J] . 系统科学与数学, 2015, 35(1):19-30.
[5] 周炜, 廖文和, 田威, 等. 基于粒子群优化神经网络的机器人精度补偿方法研究[J] . 中国机械工程, 2013, 24(2):174-179.
[6] To M, Webb P. An improved kinematic model for calibration of serial robots having closed-chain mechanisms[J] . Robotica, 2012, 30(6):963-971.
[7] Nguyena H N, Zhou Jian, Kang H J. A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network[J] . Neurocomputing, 2015, 151(3):996-1005.
[8] 王一. 测量机器人模型误差及标定方法的研究[D] . 天津:天津大学, 2006.
[9] Nubiola A, Bonev I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J] . Robotics Computer-Integration of Manufacturing, 2013, 29(1):236-245.
[10] 任永杰, 邾继贵, 杨学友, 等. 利用激光跟踪仪对机器人进行标定的方法[J] . 机械工程学报, 2007, 43(9):195-200.
[11] Lightcap C, Hamner S, Schmitz T, et al. Improved positioning accuracy of the PA10-6CE robot with geometric and flexibility calibration[J] . IEEE Trans on Robotics and Automation, 2008, 24(2):452-456.
[12] Nubiola A, Bonev I A. Absolute robot calibration with a single telescoping ballbar[J] . Precision Engineering, 2014, 38(3):472-480.
[13] 周炜, 廖文和, 田威, 等. 面向飞机自动化装配的机器人空间网格精度补偿方法研究[J] . 中国机械工程, 2012, 23(19):2306-2311.
[14] Santolaria J, Conte J, Ginés M. Laser tracker-based kinematic parameter calibration of industrial robots by improved CPA method and active retroreflector[J] . International Journal of Advanced Manufactu-ring Technology, 2013, 66(9):2087-2106.
[15] Wu Yier, Klimchik A, Caro S. Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments[J] . Robotics and Computer-Integrated Manufacturing, 2015, 35(10):151-168.
[16] 郭剑鹰, 吕恬生, 王乐天. 工业机器人运动学参数误差两步识别法[J] . 上海交通大学学报, 2003, 37(11):1670-1674.
[17] 刘志, 赵正大, 谢颖, 等. 考虑结构变形的机器人运动学标定及补偿[J] . 机器人, 2015, 37(3):376-384.
[18] 谭月胜, 孙汉旭, 贾庆轩, 等. 基于旋量理论及距离误差的机械臂标定新方法[J] . 北京航空航天大学学报, 2006, 32(9):1104-1108.
[19] 高文斌, 王洪光, 姜勇, 等. 基于距离误差的机器人运动学参数标定方法[J] . 机器人, 2013, 35(5):600-606.
[20] 任永杰, 邾继贵, 杨学友, 等. 基于距离精度的测量机器人标定模型及算法[J] . 计量学报, 2008, 29(3):198-2022.
[21] Zhuang Hanqi, Motaghedi S H, Roth Z S. Robot calibration with planar constraints[C] //Proc of IEEE International Conference on Robo-tics & Automation. 1999:805-810.
[22] Chiu Y J, Perng M H. Self-calibration of a general hexapod manipulator using cylinder constraints[J] . International Journal of Machine Tools & Manufacture, 2003, 43(10):1051-1066.
[23] Hage H, Bidaud P, Jardin N. Practical consideration on the identification of the kinematic parameters of the Staubli TX90 robot[C] //Proc of World Congress in Mechanism and Machine Science. 2011:1-8.
[24] Joubair A, Bonev I A. Non-kinematic calibration of a six-axis serial robot using planar constraints[J] . Precision Engineering, 2014, 40(4):325-333.
[25] Meggiolaro M A, Scriffignano G, Dubowsky S. Manipulator calibration using a single endpoint contact constraint[C] //Proc of ASME Design Engineering Technical Conference. 2000:1-9.
[26] Liu Yong, Xi Ning, Zhao Jianguo, et al. Development and Sensitivity analysis of a portable calibration system for joint offset of industrial robot[C] //Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2009:3838-3843.
[27] 时定兵. 基于点约束的机器人运动学参数标定技术研究[D] . 南京:南京理工大学, 2014.
[28] 解则晓, 辛少辉, 李绪勇, 等. 基于单目视觉的机器人标定方法[J] . 机械工程学报, 2011, 47(5):35-39.
[29] 丁雅斌, 梅江平, 张文昌, 等. 基于单目视觉的并联机器人末端位姿检测[J] . 机械工程学报, 2014, 50(21):174-179.
[30] 应再恩, 李正洋, 平雪良, 等. 基于双目视觉动态跟踪的机器人标定[J] . 计算机应用研究, 2014, 31(5):1424-1427.
[31] Klimchik A, Wu Y, Dumas C, et al. Identification of geometrical and elastostatic parameters of heavy industrial robots[C] //Proc of IEEE International Conference on Robotics and Automation. 2013:3707-3714.
[32] Klimchik A, Furet B, Caro S, et al. Identification of the manipulator stiffness model parameters in industrial environment[J] . Mechanism and Machine Theory, 2015, 90(8):1-22.
[33] Santolaria J, Yagüe J A, Jiménez R, et al. Calibration based thermal error model for articulated arm coordinate measuring machines[J] . Precision Engineering, 2009, 33(4):476-485.
[34] Mooring B. The effect of joint axis misalignment on robot positioning accuracy[C] //Proc of ASME International Computers in Engineering Conference. 1983:151-156.
[35] Hayati S A. Robot arm geometric link parameter estimation[C] //Proc of the 2nd IEEE Conference on Decision and Control. 1983:1477-1483.
[36] Stone H W, Sanderson A C. Statistical performance evaluation of the S-model arm signature identification technique[C] //Proc ofIEEE International on Robotics and Automation. 1988:939-946.
[37] Whitney B D E, Lozinski C A, Rourke J M. Industrial robot calibration method and results[J] . Computers in Engineering, 1986, 108(1):1-8.
[38] 高文斌, 王洪光, 姜勇. 一种基于指数积的串联机器人标定方法[J] . 机器人, 2013, 35(2):156-161.
[39] Zhuang Hanqi, Roth Z S, Hamano F. A complete and parametrically continuous kinematic model for robot manipulators[J] . IEEE Trans on Robotics and Automation, 1992, 8(4):451-463.
[40] Kazerounian K, Qian G Z. Kinematic calibration of an industrial manipulator[J] . ASME Journal of Mechanisms Transmission and Automation of Design, 1989, 111:482-487.
[41] 王伟, 刘立冬, 王刚, 等. 基于四元数表示法的机器人基坐标系标定方法[J] . 北京航空航天大学学报, 2015, 41(3):411-417.
[42] Corradini C, Fauroux J C, Krut S, et al. Evaluation of a 4-degree of freedom parallel manipulator stiffness[C] // Proc of the 11th World Congress in Mechanism and Machine Science. 2003:1-4.
[43] Aviles R, Ajuria M B G, Hormaza M V, et al. A procedure based on finite elements for the solution of nonlinear problems in the kinematic analysis of mechanisms[J] . Finite Elements in Analysis and Design, 1996, 22(4):305-327.
[44] Fernandez B I, Agirrebeitia J, Ajuria G, et al. A new finite element to represent prismatic joint constraints in mechanisms[J] . Finite Elements in Analysis and Design, 2006, 43(1):36-50.
[45] Klimchik A, Pashkevich A, Chablat D. CAD-based approach for identification of elastostatic parameters of robotic manipulators[J] . Finite Elements in Analysis & Design, 2013, 75(6):19-30.
[46] Deblaise D, Hernot X, Maurine P. A systematic analytical method for PKM stiffness matrix calculation[C] //Proc of IEEE International Conference on Robotics and Automation. 2006:4213-4219.
[47] Ecorchard G, Neugebauer R, Maurine P. Elasto-geometrical modeling and calibration of redundantly actuated PKMs[J] . Mechanism and Machine Theory, 2010, 45(5):795-810.
[48] Huang Tian, Zhao Xingyu, Whitehouse D J. Stiffness estimation of a tripod-based parallel kinematic machine[J] . IEEE Trans on Robo-tics and Automation, 2002, 18(1):50-58.
[49] Dumas C, Caro S, Cherif M, et al. Joint stiffness identification of industrial serial robots[J] . Robotica, 2012, 30(4):881-888.
[50] Li Rui, Zhao Yang. Dynamic error compensation for industrial robot based on thermal effect model[J] . Measurement, 2016, 88(6):113-120.
[51] Lubrano E, Clavel R. Thermal calibration of a 3 DOF ultra high-precision robot operating in industrial environment[C] //Proc ofIEEE International Conference on Robotics and Automation. 2010:3692-3697.
[52] Zhu Jie. Robust thermal error modeling and compensation for CNC machine tools[D] . Michigan:University of Michigan, 2008.
[53] 王东署, 迟健男. 机器人运动学标定综述[J] . 计算机应用研究, 2007, 24(9):8-11, 39.
[54] 龚星如, 沈建新, 田威, 等. 工业机器人的绝对定位误差模型及其补偿算法[J] . 南京航空航天大学学报, 2012, 44(S1):60-64.
[55] Klimchik A, Wu Yier, Caro S, et al. Geometric and elastostatic calibration of robotic manipulator using partial pose measurements[J] . Advanced Robotics, 2014, 28(21):1419-1429.
[56] Pashkevich A. Computer-aided generation of complete irreducible models for robotic manipulators[C] //Proc of the 3rd Conference of Modeling and Simulation. 2001:293-298.
[57] Khalil W, Dombre E. Modeling, dentification and control of robots[M] . [S. l. ] :Butterworth-Heinemann, 2004:447-473.
[58] Meggiolaro M A, Dubowsky, S. An analytical method to eliminate the redundant parameters in robot calibration[C] //Proc of IEEE International Conference on Robotics & Automation. 2001:3609-3615.
[59] 温卓漫, 王延杰, 邸男. 基于合作靶标的在轨手眼标定[J] . 仪器仪表学报, 2014, 35(5):1005-1012.
[60] Wang Haixia, Ma Yuanyuan, Cheng Sheng, et al. Accurate robot calibration by SAI method through visual measurement[C] // Proc ofIEEE International Conference on Robotics & Biomimetics. 2013:2679-2684.
[61] Li Tian, Sun Kui, Jin Yue, et al. A novel optimal calibration algorithm on a dexterous 6 DOF serial robot with the optimization of measurement poses number[C] //Proc of IEEE International Conference on Robotic & Automation. 2011:975-981.
[62] 李睿, 曲兴华. 工业机器人运动学参数标定误差不确定度研究[J] . 仪器仪表学报, 2014, 35(10):2192-2199.
[63] 李睿, 曲兴华. 基于组合测量的机器人运动误差特性分析及定位补偿技术[J] . 机器人, 2014, 36(3):279-284.
[64] 丁学亮. Staubli工业机器人标定算法和实验研究[D] . 杭州:浙江理工大学, 2013.
[65] Goodwin G C, Payne R L. Dynamic system identification:experiment design and data analysis[M] //Mathematics in Science and Enginee-ring. [S. l. ] :Academic Press, 1977.
[66] Pauw D D. Optimal experimental design for calibration of bioprocess models:a validated software toolbox[D] . Ghent:Ghent University, 2005.
[67] Zullo L C. Computer aided design of experiments:an engineering approach[D] . London:Imperial College London, 1991.
[68] Franceschini G, Macchietto S. Model-based design of experiments for parameter precision:State of the art[J] . Chemical Engineering Science, 2008, 63(19):846-872.
收稿日期 2016/9/13
修回日期 2016/11/7
页码 2570-2576
中图分类号 TP242.2
文献标志码 A