《计算机应用研究》|Application Research of Computers

在软件易变性上下文中类规模对面向对象度量的影响分析

Potentially confounding effect of class size on validity of object-oriented metrics in context of software change-proneness

免费全文下载 (已被下载 次)  
获取PDF全文
作者 吴方君
机构 江西财经大学 a.信息管理学院;b.江西省高校数据与知识工程重点实验室,南昌 330032
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2017)08-2417-05
DOI 10.3969/j.issn.1001-3695.2017.08.041
摘要 软件易变性预测主要通过软件的内部特性,即软件度量值来刻画、预测的,是软件工程中热点方向之一,在提高软件质量、控制软件成本方面起着非常重要的作用。虽然软件易变性预测在学术界取得了一系列的成绩,但在工业界尚未有成功应用的案例。从简单相关性分析与偏相关性分析和关联规则挖掘的角度出发甄别面向对象度量与软件易变性间相关性的真伪,明确了在软件易变性上下文中类规模对面向对象度量有潜在影响。
关键词 软件易变性;面向对象度量;相关性分析;关联规则挖掘
基金项目 江西省自然科学基金资助项目(20142BAB207010)
江西省教育厅科技项目(GJJ160427)
本文URL http://www.arocmag.com/article/01-2017-08-041.html
英文标题 Potentially confounding effect of class size on validity of object-oriented metrics in context of software change-proneness
作者英文名 Wu Fangjun
机构英文名 a.SchoolofInformationManagement,b.JiangxiProvincialKeyLaboratoryofData&KnowledgeEngineering,JiangxiUniversityofFinance&Economics,Nanchang330032,China
英文摘要 Software change-prone prediction, one of the hot topics in software engineering domain, mainly through the internal characteristics of software, namely software metrics, to describe and forecast the external characteristics of the software, plays an important role in controlling and improving software quality and software cost balance. Although software change-prone prediction has made a series of achievements in the academic field, there has not yet been a successful application in the indus-trial field. This paper identified the authenticity of the correlation between object-oriented metrics and software change-proneness from the aspects of simple correlation analysis, partial correlation analysis and association mining. The experiment results show that there are potentially confounding effect of class size on the validity of object-oriented metrics in the context of software change-proneness.
英文关键词 software change-proneness; object-oriented metrics; correlation analysis; association rule mining
参考文献 查看稿件参考文献
  [1] Li Wei, Henry S M. Object-oriented metrics that predict maintainability[J] . Journal of Systems and Software, 1993, 23(2):111-122.
[2] Kabaili H, Keller R K, Lustman F. Class cohesion as predictor of chan-geability:an empirical study[J] . L’Object, 2001, 7(4):515-534.
[3] Tsantalis N, Chatzigeorgiou A, Stephanides G. Predicting the probabi-lity of change in object-oriented systems[J] . IEEE Trans on Software Engineering, 2005, 31(7):601-614.
[4] Koru A G, Tian J. Comparing high-change modules and modules with the highest measurement values in two large-scale open source products[J] . IEEE Trans on Software Engineering, 2005, 31(8):625-642.
[5] Zhou Yuming, Leung H, Xu Baowen. Examining the potentially confounding effect of class size on the associations between object-oriented metrics and change-proneness[J] . IEEE Trans on Software Engineering, 2009, 35(5):607-623.
[6] Lu Hongmin, Zhou Yuming, Xu Baowen, et al. The ability of object-oriented metrics to predict change-proneness:a meta-analysis[J] . Empirical Software Engineering, 2012, 17(3):200-242.
[7] 卢红敏. 基于元分析的面向对象度量与易变性关系研究[D] . 南京:东南大学, 2012.
[8] 卢红敏, 周毓明, 徐宝文. 类规模对面向对象度量易变性预测能力的潜在混和效应:一个元分析[J] . 计算机学报, 2015, 38(5):1069-1081.
[9] 原子, 于莉莉, 刘超. 面向细粒度源代码变更的缺陷预测方法[J] . 软件学报, 2014, 25(11):2499-2517.
[10] 陈翔, 顾庆, 刘望舒, 等. 静态软件缺陷预测方法研究[J] . 软件学报, 2016, 27(1):1-25.
[11] 刘英博, 王建民. 面向缺陷分析的软件库挖掘方法综述[J] . 计算机科学, 2007, 34(9):1-4.
[12] 李宁, 李战怀. 软件缺陷数据处理研究综述[J] . 计算机科学, 2009, 36(8):21-25, 78.
[13] Song Qinbao, Jia Zihan, Shepperd M, et al. A general software defect-proneness prediction framework[J] . IEEE Trans on Software Engineering, 2011, 37(3):356-370.
[14] Bishnu P S, Bhattacherjee V. Software fault prediction using Quad tree-based K-means clustering algorithm[J] . IEEE Trans on Know-ledge and Data Engineering, 2012, 24(6):1146-1150.
[15] 吴方君. 软件缺陷预测经验共享:一种迁移学习方法[J] . 小型微型计算机系统, 2014, 35(11):2416-2421.
[16] Wu Fangjun. Comparative empirical analysis of software network and CK metrics:implications for pre-and post-release faults[J] . Journal of Software, 2014, 9(3):541-552.
[17] 吴方君, 易彤, 钱忠胜, 等. 基于数据挖掘和复杂网络的UML类图复杂性度量研究[R] . 北京:国家自然科学基金结题报告, 2016.
[18] 易彤. 面向对象设计中软件度量学:回顾与热点[J] . 计算机应用研究, 2011, 28(2):427-434.
[19] http://www. mccabe. com[EB/OL] .
[20] Huang Jin, Ling C X. Using AUC and accuracy in evaluating learning algorithms[J] . IEEE Trans on Knowledge and Data Enginee-ring, 2005, 17(3):299-310.
[21] Zhou Yuming, Leung H. Replication data for:empirical analysis of object-oriented design metrics for predicting high and low severity faults[J] . IEEE Trans on Software Engineering, 2006, 32(10):771-789.
收稿日期 2016/10/20
修回日期 2016/11/29
页码 2417-2421
中图分类号 TP311.5
文献标志码 A