《计算机应用研究》|Application Research of Computers

基于数据驱动的群智感知任务分配算法

Crowed sensing task assignment algorithm based on dynamic data driven

免费全文下载 (已被下载 次)  
获取PDF全文
作者 张震,李鹏
机构 国家计算机网络应急技术处理协调中心,北京 100029
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2017)08-2376-04
DOI 10.3969/j.issn.1001-3695.2017.08.032
摘要 群智感知技术的应用实现了人群感测作用的最大化,作为社会网络研究的核心技术之一,对于感知参与者的位置和轨迹不确定性的问题造成群智感知数据实时性较差,为此,提出了一种基于空间任务分配的移动群智任务分配算法。该算法采用动态和自适应的数据驱动方案获取最优的模式来解决感知动态化问题;算法基于公开历史轨迹的移动模型(基于马尔可夫模型),根据初始任务按照贝叶斯推理来估算下一位置,基于该算法的数据采集策略可以实现有本地服务引导未来数据的收集,从而完成整个感知的回路反馈。所提出的任务分配被证明基于不确定轨迹的移动群智感知任务分配是有效的。
关键词 群智感知;社会网络;自适应的数据驱动;任务分配
基金项目
本文URL http://www.arocmag.com/article/01-2017-08-032.html
英文标题 Crowed sensing task assignment algorithm based on dynamic data driven
作者英文名 Zhang Zhen, Li Peng
机构英文名 NationalComputerNetworkEmergencyResponseTechnicalTeam/CoordinationCenterofChina,Beijing100029,China
英文摘要 The crowd sensing realizes the maximization perception for crowd, which has been considered the key techno-logy for society network. However, to perceive the position of the participants and trajectory uncertainty problem caused by poor group of mental perception data real-time, this paper proposed a crowd sensing group of intellectual task allocation algorithm based on space task allocation. The algorithm adopted the dynamic and adaptive data-driven scheme to obtain the optimal model to solve the problem of dynamic perception. Track algorithm was based on public mobile model (based on Markov model), Bayesian inference, according to the initial task to estimate the next position, data acquisition strategy based on this algorithm could achieve a local service to guide the future data collection, thus it completed the entire loop feedback of perception.Task assignment is proved based on the uncertain path of mobile group of mental perception task allocation is effective.
英文关键词 crowd sensing; society network; adaptive data driven; task assignment
参考文献 查看稿件参考文献
  [1] 赵东. 移动群智感知网络中数据收集与激励机制研究[D] . 北京:北京邮电大学, 2014.
[2] 杜扬, 黄河, 孙玉娥, 等. 地理位置相关移动感知系统任务分配问题研究[J] . 计算机研究与发展, 2014, 51(11):2374-2381.
[3] Kazemi L, Shahabi C. Geocrowd:enabling query answering with spatial crowdsourcing[C] //Proc of the 20th International Conference on Advances in Geographic Information Systems. 2012:189-198.
[4] Pournajaf L, Li Xiong, Sunderam V, et al. Spatial task assignment for crowd sensing with cloaked locations[C] //Proc of International Conference on Mobile Data Management. 2014.
[5] Darema F. Dynamic data driven applications systems:a new paradigm for application simulations and measurements[C] //Proc of Computational Science. [S. l. ] :Springer, 2004:662-669.
[6] Shin M, Cornelius C, Peebles D, et al. Anonysense:a system for anonymous opportunistic sensing[J] . Journal of Pervasive and Mobile Computing, 2010, 7(1):16-30.
[7] Deng Dingxiong, Shahabi C, Demiryurek U. Maximizing the number of worker’s self-selected tasks in spatial crowdsourcing[C] //Proc of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2013:314-323.
[8] Das T, Mohan P, Padmanabhan V N, et al. Platform for remote sensing using smartphones[C] //Proc of the 8th ACM International Conference on Mobile Systems, Applications, and Services. 2010:63-76.
[9] Reddy S, Estrin D, Srivastava M. Recruitment framework for participatory sensing data collections[C] //Proc of the 8th International Conference on Pervasive Computing. Berlin:Springer, 2010:138-155.
[10] Riahi M, Papaioannou T G, Trummer I, et al. Utility-driven data acquisition in participatory sensing[C] //Proc of the 16th International Conference on Extending Database Technology. 2013:151-162.
[11] Lin Miao, Hsu Wenjing. Mining GPS data for mobility patterns:a survey[J] . Pervasive and Mobile Computing, 2013, 12(6):1-16.
[12] Musolesi M, Mascolo C. Mobility models for systems evaluation[M] //Middleware for Network Eccentric and Mobile Applications. [S. l. ] :Springer, 2009:43-62.
[13] Liao Lin, Patterson D J, Fox D, et al. Learning and inferring transportation routines[J] . Artificial Intelligence, 2007, 171(5):311-331.
[14] Xue A Y, Zhang Rui, Zheng Yu, et al. Destination prediction by sub-trajectory synthesis and privacy protection against such prediction[C] //Proc of the 29th International Conference on Data Engineering. 2013.
[15] 马华东, 袁培燕, 赵东. 移动机会网络路由问题研究进展[J] . 软件学报, 2015, 26(3):600-616.
[16] Wang Yijie, Li Xiaoyong, Li Xiaoling, et al. A survey of queries over uncertain data[J] . Knowledge and Information Systems, 2013, 37(3):1-46.
[17] Pournajaf L, Li Xiong, Vaidy S, et al. Spatial task assignment for crowd sensing with cloaked locations[C] //Proc of International Conference on Mobile Data Management. 2014.
[18] 黄涵霞, 丁强, 李莉, 等. 移动终端智能引擎平台研究[J] . 计算机研究与发展, 2014, 24(6):184-186.
收稿日期 2016/6/3
修回日期 2016/8/1
页码 2376-2379
中图分类号 TP301.6
文献标志码 A