《计算机应用研究》|Application Research of Computers

基于移动辅助的无线传感器网络信息获取技术研究

Mobile assisted wireless sensor network information acquisition technique

免费全文下载 (已被下载 次)  
获取PDF全文
作者 赵辉,贾宗璞
机构 河南理工大学 计算机科学与技术学院,河南 焦作 454000
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2014)11-3447-04
DOI 10.3969/j.issn.1001-3695.2014.11.056
摘要 提出了一种基于边际值理论的移动代理辅助的无线传感器网络(WSN)自适应信息获取技术(EMVT)。这种方法来源于行为生态学。根据边际值理论,将整个传感器场分成小块,然后将每一块中的相关数据集中起来。每一个给定节点的观测值都被作为具有一定相对标准差的边际信息源。移动代理通过当前传感器块收集到的信息估计出相关性,然后选择下一个观测节点。由于在动态变化的环境中不同块之间的相关性不同,有效的估计相关性模型方法就是有效数据的获取。基于边际值理论的估计方法能够利用较少的观测值保持感兴趣数据的保真度。仿真表明了方法的有效性。
关键词 行为生态学;数据获取;边际值理论
基金项目
本文URL http://www.arocmag.com/article/01-2014-11-056.html
英文标题 Mobile assisted wireless sensor network information acquisition technique
作者英文名 ZHAO Hui, JIA Zong-pu
机构英文名 School of Computer Science & Technology, University of Polytechnic of Henan, Jiaozuo Henan 454000, China
英文摘要 This paper proposed an adaptive data-harvesting approach for mobile-agent-assisted data collection in wireless sensor networks (WSN) inspired by behavioral ecology.By using the marginal value theorem, it divided the entire sensor field into small patches and gathered the correlated data from each patch. Each observation gathered by a given sensor node to be considered to be a marginal information source with a relative standard deviation. The mobile agent estimated the correlation based on the available knowledge gathered from the current patch and the previous patches and then chose the next visiting sensor node. Since, in a dynamically changing environment, the correlation varied among different patches, an efficient way to understand the correlation model was the key to efficient data harvesting. The proposed estimation technique of the marginal value theorem, which is called estimation technique based on the marginal value theorem(EMVT), is used to maintain the fidelity of the interested data with relatively fewer collected sensor observations.
英文关键词 behavioral ecology; data acquisition; marginal value theorem
参考文献 查看稿件参考文献
  [1] MAINWARING A, CULLER D, POLASTRE J, et al. Wireless sensor networks for habitat monitoring[C] //Proc of ACM International Workshop on Wireless Sensor Networks. 2002:88-97.
[2] FASOLO E, ROSSI M, WIDMER J, et al. In-network aggregation techniques for wireless sensor networks:a survey[J] . IEEE Wireless Communication, 2007, 14(2):70-87.
[3] GUPTA P, KUMAR P R. Critical power for asymptotic connectivity[C] //Proc of the 37th IEEE Conference on Decision and Control. 1998:1106-1110.
[4] MACHADO R, ANSARI N, WANG G, et al. Adaptive density control in heterogenous wireless sensor networks with and without power management[J] . IET Communication, 2010, 4(7):758-767. [5] ABADI D J, MADDEN S, LINDNER W. REED:robust, efficient filtering and event detection in sensor networks[C] //Proc of ACM International Conference on Very Large Data Bases. 2005:769-780.
[6] MADDEN S, FRANKLIN M J, HELLERSTEIN J M, et al. TAG:a tiny aggregation service for Ad hoc sensor networks[C] //Proc of the 5th USENIX OSDI. 2002:131-146.
[7] JIAN S, SHAH R C, BRUNETTE W, et al. Exploiting mobility for energy efficient data collection in wireless sensor networks[J] . Mobile Networks and Applications, 2006, 11(3):327-339.
[8] SUGIHARA R, GUPTA R K. Optimizing energy-latency trade-off in sensor networks with controlled mobility[C] //Proc of IEEE INFOCOM. 2009:2566-2570.
[9] GU Yao-yao, BZODA D, BREWER R W, et al. Data harvesting with mobile elements in wireless sensor networks[J] . Journal Computer〓〓 Networks, 2006, 50(17):3449-3465.
[10] BERGER J O, De OLIVEIRA V, SANSO B. Objective bayesian analysis of spatially correlated data[J] . Joural of American Stater Association. , 2001, 96(456):1361-1374.
[11] OSBORNE M A, ROBERTS S J, ROGERS A , et al. Towards real-time information processing of sensor network data using computationally efficient multi-output Gaussian processes[C] //Proc ofInternational Conference on Infomation Processing in Sensor Networks. 2008:109-210.
[12] KHO J, ROGERS A, JENNONGS N R. Decentralized control of adaptive sampling in wireless sensor networks[J] . ACM Trans on Sensor Networks, 2009, 5(3):639- 646.
[13] KRAUSE A, RAJAGOPAL R, GUPTA A, et al. Simultaneous placement and scheduling of sensors[C] //Proc of International Conference on Information Processing in Sensor Networks. 2009:181-192.
收稿日期 2013/10/13
修回日期 2013/12/5
页码 3447-3450,3454
中图分类号 TP393.09
文献标志码 A