《计算机应用研究》|Application Research of Computers

基于改进的粒子滤波非线性约束优化算法

Particle filter based on nonlinear constraint optimization algorithms

免费全文下载 (已被下载 次)  
获取PDF全文
作者 张凌晓,刘克成,杨新锋,张军朝
机构 1.南阳理工学院 计算机与信息工程学院,河南 南阳 473004;2.太原理工大学 计算机科学与技术学院,太原 030024
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2014)11-3266-03
DOI 10.3969/j.issn.1001-3695.2014.11.016
摘要 传统的非线性约束优化算法的精度较低,为了克服这一问题,提出了一种基于粒子滤波的新型优化算法。该算法用于解决非线性约束优化问题,并结合粒子滤波器的模型和机制。首先,利用粒子滤波算法的基本原理建立这种优化算法,并给出算法的操作步骤;然后将非线性约束优化问题转换为函数优化问题函数优化问题,并针对非线性约束优化问题,建立粒子滤波优化算法的数学模型。仿真实验结果证明了这种新型算法的正确性,并且表明了相对于传统的优化算法,基于粒子滤波器的优化方法在解决非线性优化问题方面具有更高的效率和速率,并对今后的非线性约束优化问题具有适应性。
关键词 粒子滤波;优化算法;多维函数;非线性约束优化
基金项目 河南省科技攻关项目(122102210563,132102210215)
本文URL http://www.arocmag.com/article/01-2014-11-016.html
英文标题 Particle filter based on nonlinear constraint optimization algorithms
作者英文名 ZHANG Ling-xiao, LIU Ke-cheng, YANG Xin-feng, ZHANG Jun-chao
机构英文名 1. School of Computer & Information Engineering, Nanyang Institute of Technology, Nanyang Henan 473004, China; 2. School of Computer Science & Technology, Taiyuan University of Technology, Taiyuan 030024, China
英文摘要 In order to overcome the problem of low solution precision of traditional nonlinear constraint algorithms, this paperproposed a new optimization algorithm based on particle filter.It used this algorithm to solve nonlinear constraint problem, and combined the model and mechanism of particle filters.It established the optimization algorithm based on particle filter algorithm, and gave the procedures of which as well. Then it converted the nonlinear constraint optimization problems to function optimization problems, and established mathematical models of particle filter optimization algorithm for the nonlinear constraint optimization problems. Simulation results verify the validity of the new algorithm, and show that the optimization method based on particle filter has higher efficiency and rate than the traditional optimization algorithm when solving nonlinear optimization problems. Meanwhile, the proposed algorithm has its feasibility to future research on nonlinear constraint optimization problems.
英文关键词 particle filter; optimization algorithm; multi-dimensional function; nonlinear constraint optimization
参考文献 查看稿件参考文献
  [1] WANG Jing, YU Ming-chao, XIAO Ye-gui. Dynamic performance optimization of the supply chain with nonlinear constraints[C] // Proc of International Conference on Management of e-Commerce and e-Government. 2012:419-424.
[2] 张春. 非线性优化控制算法在合成氨生产中的应用[J] . 计算机仿真, 2013, 30(6):331-334.
[3] QIU Yuan-ying, CHEN Ying, LI Lei, et al. Multivariate spectral conjugate gradient projection method for nonlinear monotone equations[C] //Proc of the 4th International Conference on Emerging Intelligent Data and Web Technologies. 2013:9-11.
[4] TAN Dai-lun, LIU Yi. The optimal logical structure of the Ad hoc network based on the nonlinear programming method[C] //Proc of the 5th International Conference on Intelligent Computation Technology and Automation. 2012:12-14.
[5] 陈志敏, 薄煜明, 吴盘龙, 等. 基于新型粒子群优化粒子滤波的故障诊断方法[J] . 计算机应用, 2012, 32(2):432-435.
[6] PAU C, ANTONI G. Sequential estimation of gating variables from voltage traces in single-neuron models by particle filtering[C] //Proc of IEEE International Conference on Acoustics, Speech and Signal Processing. 2013:26-31.
[7] 周同驰, 艾斯卡尔·艾木都拉, 杨强, 等. 双目视觉的弱点动目标粒子滤波跟踪定位研究[J] . 计算机工程应用, 2012, 48(9):185-188.
[8] ZHANG Gao-yu, LI Qiong-fei, LUO Qing, et al. High frequency financial time series forecasting via particle filtering[C] //Proc ofInternational Conference on Information Management, Innovation Management and Industrial Engineering. 2009:62-65.
[9] 胡士强, 敬忠良. 粒子滤波算法综述[J] . 控制与决策, 2005, 20(4):361-365.
[10] MAHMOUD I I, TAEAB A A E, SALAMA M, et al. Appraisal of different particle filter resampling schemes effect in robot localization[C] //Proc of the 29th National Radio Science Conference. 2012:477-484.
[11] 向万里, 马寿峰. 基于轮盘赌反向选择机制的蜂群优化算法[J] . 计算机应用研究, 2013, 30(1):86-89.
[12] LU Hai-yan, CHEN Wei-qi. Self-adaptive velocity particle swarm optimization for solving constrained optimization problems[J] . Journal of Global Optimizaion, 2008, 41(3):427-445.
[13] LU Hai-yan, CHEN Wei-qi. Dynamic-objective particle swarm optimization for constrained optimization problems[J] . Journal of Combinatorial Optimization, 2006, 12(2):409-419.
[14] GAO Yue-lin, LI Hui-rong. Hybrid particle swarm algorithm of nonlinear constraint optimization problems[J] . Mathematica Numerics Sincia, 2010, 32(2):135-146.
收稿日期 2013/11/6
修回日期 2013/12/20
页码 3266-3268,3272
中图分类号 TP301.6
文献标志码 A