《计算机应用研究》|Application Research of Computers

一种基于图的近重复视频子序列匹配算法

Graph-based near-duplicate video subsequence matching algorithm

免费全文下载 (已被下载 次)  
获取PDF全文
作者 刘红
机构 第二军医大学 网络信息中心,上海 200433
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2013)12-3857-06
DOI 10.3969/j.issn.1001-3695.2013.12.089
摘要 为了解决近重复视频检测中的效果和效率问题, 提出了一种基于图的近重复视频子序列匹配算法。将基于关键帧特征的相似性查询结果构建成匹配结果图, 进而将近重复视频检测转换成一个在匹配结果图中查找最长路径的问题。该算法有三个主要优势:a)它能在众多杂乱的匹配结果中找到最佳的匹配序列, 有效剔除了某些假“高相似度”匹配带来的噪声, 因而能在一定程度上弥补底层特征描述力的不足; b)由于它充分考虑和利用了视频序列的时序特性, 具有很高的近重复视频定位准确度; c)它能自动检测出匹配结果图中存在的多条离散路径, 从而能一次性检测出两段视频中可能存在多段近重复视频的情形。提出的算法不仅提高了检测的准确度, 而且提高了检测效率, 取得了良好的实践效果。
关键词 图;近重复视频;子序列匹配
基金项目
本文URL http://www.arocmag.com/article/01-2013-12-089.html
英文标题 Graph-based near-duplicate video subsequence matching algorithm
作者英文名 LIU Hong
机构英文名 Network Information Center, Second Military Medical University, Shanghai 200433, China
英文摘要 In order to improve the effectiveness and efficiency of near-duplicate video detection, this paper proposed the graph-based video subsequence matching algorithm. The algorithm constructed a matching results graph from the similarity search results based on the key frame features, and then converted the problem of near-duplicate video detection into the problem of finding the longest path in the matching results graph. The method has three main advantages: a)Graph-based method could find the best matching sequence in many messy match results, which effectively excluded false “high similarity” noise and compensated the limited description of image low level visual features. b)The graph-based method took fully into account the spatiotemporal characteristic of video sequence, and had high location accuracy. c)The graph-based sequence matching method could automatically detect the discrete paths in the matching result graph. Thus, it could detect more than one near-duplicate video. The proposed algorithm not only improves the detection accuracy, but improves the efficiency of detection, achieves good practical effect.
英文关键词 graph; near-duplicate video; video subsequence matching
参考文献 查看稿件参考文献
  [1] CHEN Tian-long, JIANG Shu-qiang, CHU Ling-yang, et al. Detection and location of near-duplicate video sub-clips by finding dense subgraphs[C] //Proc of the 19th ACM International Conference on Multimedia. New York:ACM Press, 2011:1173-1176.
[2] LAW-TO J, BUISSON O, GOUET-BRUNET V, et al. Robust voting algorithm based on labels of behavior for video copy detection[C] //Proc of the 14th ACM International Conference on Multimedia. New York:ACM Press, 2006:835-844.
[3] LAW-TO J, CHEN Li, JOLY A, et al. Video copy detection:a comparative study[C] //Proc of the 6th International Conference on Image and Video Retrieval. 2007:371-378.
[4] XIE Qing, HUANG Zi, SHEN Heng-tao, et al. Efficient and conti-nuous near-duplicate video detection[C] //Proc of the 12th International Asia-Pacific Web Conference. 2010.
[5] YEH Mei-chen, CHENG Kwang-ting. Video copy detection by fast sequence matching[C] //Proc of ACM International Conference on Image and Video Retrieval. New York:ACM Press, 2009.
[6] HUA Xian-sheng, CHEN Xian, ZHANG Hong-jiang. Robust video signature based on ordinal measure[C] //Proc of International Conference on Image Processing. 2004:685-688.
[7] SHEN Heng-tao, SHAO Jie, HUANG Zi, et al. Effiective and efficient query processing for video subsequence identification[J] . IEEE Trans on Knowledge and Data Engineering, 2009, 21(3):321-334.
[8] TAN H K, NGO C W, CHUA T S. Efficient mining of multiple partial near-duplicate alignments by temporal network[J] . IEEE Trans on Circuits and Systems for Video Technology, 2010, 20(11):1486-1498.
[9] TAN H K, NGO C W, HONG R, et al. Scalable detection of partial near-duplicate videos by visual-temporal consistency[C] //Proc of the 17th ACM International Conference on Multimedia. New York:ACM Press, 2009:145-154.
[10] HAMPAPUR A, BOLLE R M. Comparison of distance measures for video copy detection[C] //Proc of IEEE International Conference on Multimedia and Expo. 2001:737-740.
[11] HAMPAPUR A, HYUN K H, BOLLE R. Comparison of sequence matching techniques for video copy detection[C] //Storage and Retrieval for Media Databases. 2002:194-201.
[12] WU Xiao, NGO C W, HAUPTMANN A, et al. Real-time near-duplicate elimination for Web video search with content and context[J] . IEEE Trans on Multimedia, 2009, 11(2):196-207.
[13] CHEN Li, STENTIFORD F W M. Video sequence matching based on temporal ordinal measurement[J] . Pattern Recognition Letters, 2008, 29(13):1824-1831.
[14] KIM C, VASUDEV B. Spatiotemporal sequence matching for efficient video copy detection[J] . IEEE Trans on Circuits and Systems for Video Technology, 2005, 15(1):127-132.
[15] EHRIG H, TAENTZER G. Computing by graph transformation:a survey and annotated bibliography[R] . [S. l. ] :Leiterder Fach Bibliothek Informatik, 1996.
[16] ZHANG Hong-jiang, KANKANHALLI A, SMOLIAR S W. Automatic partitioning of full-motion video[J] . Multimedia Systems, 1993, 1(1):10-28.
[17] SHAHRARAY B, GIBBON D C. Automatic generation of pictorial transcripts of video programs[C] //Multimedia Computing and Networking. 1995:512-518.
[18] ZHANG H J, WU J H, SMOLIAR S W. System for automatic video segmentation and key frame extraction for video sequences having both sharp and gradual transitions:US, 5635982 A[P] . 1997-06-03.
[19] DIRFAUX F. Key frame selection to represent a video[C] //Proc of International Conference on Image Processing. 2000:275-278.
[20] SZE K W, LAM K M, QIU Guo-ping. A new key frame representation for video segment retrieval[J] . IEEE Trans on Circuits Systems for Video Technology, 2005, 15(9):1148-1155.
[21] TRUONG B T, VENKATESH S. Video abstraction:a systematic review and classification[J] . ACM Trans on Multimedia Computing, Communications, and Applications, 2007, 3(1):1-37.
[22] KUCUKTUNC O, GUDUKBAY U, UIUSOYA O. Fuzzy color histogrambased video segmentation[J] . Computer Vision and Image Understanding, 2010, 114(1):125-134.
[23] DOUZE M, GAIDON A, JEGOU H, et al. INRIA-LEARs video copy detection system[EB/OL] . (2008). http://www-nlpir. nist. gov/projects/tvpubs/tv8. papers/inria-lear. pdf.
[24] ZHANG Xu-dong, LIU Tie-yan, LO K T, et al. Dynamic selection and effective compression of key frames for video[J] . Pattern Reco-gnition Letters, 2003, 24(9):1523-1532.
[25] GUIL N, GONZLEZ-LINARES J M, CZAR J R, et al. A clustering technique for video copy detection[C] //Proc of the 3rd Iberian Conference on Pattern Recognition and Image Analysis. Berlin:Sprin-ger-Verlag, 2007:452-458.
[26] FURHT B, SMOLIAR S W, ZHANG Hong-jiang. Video and image processing in multimedia systems[M] . Boston:Kluwer Academic Publisher, 1995.
[27] LIU Hong, LU Hong, WEN Zhao-hui, et al. Gradient ordinal signature and fixed-point embedding for efficient near-duplicate video detection[J] . IEEE Trans on Circuits and Systems for Video Technology, 2012, 22(4):555-566.
[28] 刘红. 近重复视频检测算法研究[D] . 上海:复旦大学, 2012.
[29] Final list of transformations[EB/OL] . (2008). http://www-nlpir. nist. gov/projects/tv2008/active/copy. detection/final. cbcd. video. transformations. pdf.
[30] LIU Hong, LU Hong, XUE Xiang-yang. A segmentation and graph-based video sequence matching method for video copy detection[J] . IEEE Trans on Knowledge and Data Engineering, 2013, 25(8):1706-1718.
[31] XUE Xiang-yang, ZHANG Wei, GUO Yue-fei, et al. Fudan university at TRECVID[EB/OL] . (2008). http://www-nlpir. nist. gov/projects/tvpubs/tv8. papers/fudan. pdf.
收稿日期
修回日期
页码 3857-3862
中图分类号 TP391;TP301.6
文献标志码 A