《计算机应用研究》|Application Research of Computers

一种边缘优化的暗通道去雾算法

Dark channel prior dehazing algorithm based on edge optimization

免费全文下载 (已被下载 次)  
获取PDF全文
作者 石文轩,詹诗萦,李婕
机构 武汉大学 电子信息学院,武汉 430072
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2013)12-3854-03
DOI 10.3969/j.issn.1001-3695.2013.12.088
摘要 针对暗通道先验去雾算法大部分的时间都消耗在对透射率的优化上的问题, 对暗通道去雾算法进行了改进, 提出了边缘优化的暗通道去雾算法。使用边缘算子从粗略估计的透射率中提取边缘, 对边缘及周围扩展区域内的像素采用差值抠图法优化图像中场景深度变化明显的区域的透射率。实验结果证明, 边缘优化的暗通道去雾算法在得到与原始算法基本一致的去雾结果的同时, 平均计算时间仅为原算法时间的60%左右, 有效减少了计算量, 提高了去雾算法的运算速度。
关键词 去雾;图像复原;暗通道先验;边缘优化
基金项目
本文URL http://www.arocmag.com/article/01-2013-12-088.html
英文标题 Dark channel prior dehazing algorithm based on edge optimization
作者英文名 SHI Wen-xuan, ZHAN Shi-ying, LI Jie
机构英文名 School of Electronic Information, Wuhan University, Wuhan 430072, China
英文摘要 Most of the computation time was consumed in the step of optimization the transmittance in the dark channel prior dehazing. Aiming at this problem, this paper modified the dark channel prior dehazing algorithm, and proposed a new dark channel prior algorithm based on edge optimization. The new algorithm firstly extracted the edges from crude estimated transmittance image. Then, for the pixels on and near the edges, the difference matting optimization algorithm was performed on the regions that the depth changed significantly. The experimental results demonstrate that the performance of the proposed algorithm is substantially the same as the original one. The average computation time of the new algorithm is around 60% of the original one. Therefore, it can reduce the computation load effectively and improve the speed of the dehazing algorithm.
英文关键词 dehazing; image recovery; dark channel prior; edge optimization
参考文献 查看稿件参考文献
  [1] PERRY A H, SYMONS L J, SYMONS L. Highway meteorology [M] . London:E&FN Spon, 1991:91-130.
[2] SNOWDEN R J, STIMPSON N, RUDDLE R A. Speed perception fogs up as visibility drops[J] . Nature, 1998, 392(6675):450.
[3] 郭璠, 蔡自兴, 谢斌, 等. 图像去雾技术研究综述与展望[J] . 计算机应用, 2010, 30(9):2417-2421.
[4] 刘治群, 杨万挺, 朱强. 几种图像增强算法的研究比较[J] . 合肥师范学院学报, 2010, 28(6):60-63.
[5] 甘建红, 何童丽. 基于色彩空间单一图像像素级去雾算法[J] . 计算机应用研究, 2012, 29(9):3591-3593.
[6] SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Instant dehazing of images using polarization[C] //Proc of IEEE Conference on Computer Vision and Pattern Recognition. Kauai, HI:IEEE Computer Society, 2001:1-325.
[7] SHWARTZ S, NAMER E, SCHECHNER Y Y. Blind haze separation[C] //Proc of IEEE Conference on Computer Vision and Pattern Re-cognition. New York:IEEE Computer Society, 2006:1984-1991.
[8] SONKA M, HLANACE V, BOYLE R. 图像处理、分析与机器视觉[M] . 艾海舟, 武勃, 等译. 2版. 北京:人民邮电出版社, 2003.
[9] TAN R. Visibility in bad weather from a single image[C] //Proc of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC:IEEE Computer Society, 2008:2347-2354.
[10] 禹晶, 李大鹏, 廖庆敏. 基于物理模型的快速单幅图像去雾方法[J] . 自动化学报, 2011, 37(2):143-149.
[11] FATTAL R. Single image dehazing[J] . ACM Trans on Graphics, 2008, 27(3):1-9.
[12] HE K, SUN J, TANG Xiao-ou. Single image haze removal using dark channel prior[C] //Proc of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC:IEEE Computer Society, 2009:1956-1963.
[13] LEVIN A, LISCHINSKI D, WEISS Y. A closed form solution to natural image matting[C] //Proc of IEEE Conference on Computer Vision and Pattern Recognition. New York:IEEE Computer Society, 2006:67-68.
收稿日期
修回日期
页码 3854-3856,3862
中图分类号 TP751
文献标志码 A