《计算机应用研究》|Application Research of Computers

融合万有引力和局部熵的FCM算法

New FCM algorithm fused universal gravitation and local entropy

免费全文下载 (已被下载 次)  
获取PDF全文
作者 崔兆华,高立群,马红宾,李洪军
机构 1.东北大学 信息科学与工程学院,沈阳 110819;2.解放军第65041部队,沈阳 110113;3.白求恩国际和平医院 院务部营房科,石家庄 050081;4.白城医学高等专科学校 公共教学部,吉林 白城 137000
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2013)12-3828-03
DOI 10.3969/j.issn.1001-3695.2013.12.081
摘要 为了克服传统模糊C-均值(fuzzy C-means, FCM)聚类算法特征描述单一、易受复杂灰度影响而出现误分割的缺点, 将万有引力和图像局部熵融入到FCM算法。算法首先引入图像局部信息熵来描述节点(像素点)间的特征, 同时计算新节点的同质值; 其次, 将该同质值看做新节点的质量, 节点之间通过万有引力算子形成关联, 使节点灰度特征和节点空间位置特征有效结合, 以此解决传统FCM算法节点特征描述孤立的缺陷。最后, 对三类典型的灰度分布不均的医学图像进行仿真实验, 结果表明改进算法获得了更加精确的分割结果。
关键词 图像分割;模糊C-均值聚类算法;图像局部熵;万有引力算子
基金项目 国家自然科学基金资助项目(51005042)
国家“863”计划资助项目(2012AA062002)
中央高校基本科研业务费资助项目(N100403005)
本文URL http://www.arocmag.com/article/01-2013-12-081.html
英文标题 New FCM algorithm fused universal gravitation and local entropy
作者英文名 CUI Zhao-hua, GAO Li-qun, MA Hong-bin, LI Hong-jun
机构英文名 1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2. 65041 Troops of PLA, Shenyang 110113, China; 3. Dept. of Barracks, Bethune International Peace Hospital, Shijiazhuang 050081, China; 4. Baicheng Medical College, Baicheng Jilin 137000, China
英文摘要 To overcome the shortcomings of the traditional fuzzy C-means(FCM) clustering algorithm which were simple image feature description and easy distributed by complex grey influence with wrong segmentation, this paper proposed an improved FCM algorithm for image segmentation, combined with universal gravitation principle and local entropy theorem. Firstly, it introduced the image local entropy to accurately measure image node property between two adjacent nodes, and meanwhile computed the node homogeneous value. Then it was taken as the node quality, formed closely relationship using gravity algorithm which made the node grey feature and spatial position combine effectively. The above method solved the problem of the description of node feature isolation of traditional FCM algorithm. Finally, the simulation results show that the presented algorithm can obtain more precise segmentation results from three types of grey non-uniform distribution medical images.
英文关键词 image segmentation; FCM clustering algorithm; image local entropy; gravity algorithm
参考文献 查看稿件参考文献
  [1] 林开颜, 吴军辉, 徐立鸿. 彩色图像分割方法综述[J] . 中国图象图形学报, 2005, 10(1):906-910.
[2] 王骏, 王士同, 邓赵红. 聚类分析研究中的若干问题[J] . 控制与决策, 2012, 27(3):321-328.
[3] 李旭超, 刘海宽, 王飞, 等. 图像分割中的模糊聚类方法[J] . 中国图象图形学报, 2012, 17(4):447-458.
[4] WANG Jian-zhong, KONG Jun, LU Ying-hua, et al. A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints[J] . Computerized Medical Imaging and Graphics, 2008, 32(8):685-698.
[5] 龚劬, 姚玉敏. 基于分水岭和改进的模糊聚类图像分割[J] . 计算机应用研究, 2011, 28(12):4773-4775.
[6] BEZDEK J C, HATHAWAY R J. Convergence and theory for fuzzy C-means clustering:counterexamples and repairs [J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 1987, 17(5):873-877.
[7] 王向阳, 王春花. 基于特征散度的自适应FCM图像分割算法[J] . 中国图象图形学报, 2008, 13(5):906-910.
[8] 潘改, 高立群, 依玉峰. 基于视觉感知的模糊C-均值聚类算法[J] . 东北大学学报:自然科学版, 2012, 33(12):1690-1694.
[9] SUN Gen-yun, LIU Qin-huo, LIU Qiang, et al. A novel approach for edge detection based on the theory of universal gravity[J] . Pattern Recognition, 2007, 40(10):2766-2775.
[10] 郭丽, 高立群, 片兆宇. 一种基于滑降和随机游走图像分割算法[J] . 计算机辅助设计与图形学学报, 2009, 21(8):1149-1154.
[11] SHANNON C E. A mathematical theory of communication[J] . Bell System Technical Journal, 1948, 27:379-423.
[12] YUE X D, MIAO D Q, ZHANG N, et al. Multiscale roughness measure for color image segmentation[J] . Information Sciences, 2012, 216(20):93-112.
[13] GIZOLAMI M. Mercer kernel-based clustering in feature space [J] . IEEE Trans on Neural Networks, 2002, 13(3):780-784.
收稿日期
修回日期
页码 3828-3830
中图分类号 TP391
文献标志码 A