《计算机应用研究》|Application Research of Computers

基于Luffa杂凑函数的旋转攻击

Rotational attack on Luffa hash function

免费全文下载 (已被下载 次)  
获取PDF全文
作者 李云强,赵土华,曹进克
机构 信息工程大学 a.密码工程学院;b.科研部,郑州 450004
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2013)12-3807-03
DOI 10.3969/j.issn.1001-3695.2013.12.075
摘要 针对Luffa杂凑函数抗旋转攻击的能力进行了研究, 通过分析Luffa置换的特点, 定义了针对Luffa置换的旋转对, 给出了基本字变换对旋转关系的影响, 证明了“与”和“或”运算对旋转关系影响的等效性, 提出了缩减轮Luffa置换与随机置换的区分算法。理论分析和实验结果均表明, 3轮Luffa置换难以抵抗旋转攻击, 攻击的计算复杂度仅为216
关键词 Luffa杂凑函数;SHA3候选算法;旋转攻击;区分攻击
基金项目
本文URL http://www.arocmag.com/article/01-2013-12-075.html
英文标题 Rotational attack on Luffa hash function
作者英文名 LI Yun-qiang, ZHAO Tu-hua, CAO Jin-ke
机构英文名 a. Institute of Cryptographic Engineering, b. Scientific Research Department, Information Engineering University, Zhengzhou 450004, China
英文摘要 This paper studied the capacity of resisting rotational attack of Luffa hash function. Through analyzing characteristics of Luffa permutation, it defined the rotational pair of Luffa permutation, gave the influence of basic word transformations to rotational relation, proved that the AND operation and the OR operation had the same influence on rotational relation, and presented the distinguisher algorithm between round-reduced Luffa permutation and a random permutation. Theoretical analysis and experiment results show that 3 round Luffa permutation can't resist rotational attack and the attack complexity is only 216 .
英文关键词 Luffa hash function; SHA3 candidate algorithms; rotational attack; distinguisher attack
参考文献 查看稿件参考文献
  [1] De CANNIERE C, SATO H, WATANABE D. Hash function Luffa:specification submission to NIST(round 1)[EB/OL] . 2008(2008-10-31). http://ehash. iaik. tugraz. at/wiki/Luffa.
[2] De CANNIERE C, SATO H, WATANABE D. Hash function Luffa:specification submission to NIST(round 2) [EB/OL] . 2009(2009-09-28). http://ehash. iaik. tugraz. at/wiki/Luffa.
[3] KHOVRATOVICH D, NIKOLIC I. Rotational cryptanalysis of ARX[C] //Proc of the 17th International Workshop on Fast Software Encryption. Berlin:Springer-Verlag, 2010:333-346.
[4] KHOVRATOVICH D, NIKOLIC I, RCHBERGER C. Rotational rebound attacks on reduced Skein[C] //Proc of the 16th International Conference on Theory and Application of Cryptology and Information Security. 2010:1-19.
[5] ALIZADEH J, MIRGHADRI A. A new distinguisher for CubeHash-8/b and CubeHash-15/b compression functions[J] . IJCSI Internatio-nal Journal of Computer Science Issues, 2011, 8(5):184-192.
[6] MORAWIECKI P, PIEPRZYK J, SREBRNY R. Rotational cryptanalysis of round-reduced KECCAK[EB/OB] . (2012-12-18). http://eprint. iacr. org/2012/546.
[7] WATANABE D, HATANO Y. Higher order differential attack on reduced round Luffa[R/OB] . (2010-11-19). http://eprint. iacr. org/2010/589.
[8] KHOVRATOVICH D, NAYA-PLASENCIA M, ROCK A, et al. Cryptanalysis of Luffa v2 components[C] //Proc of the 17th International Conference on Selected Areas in Cryptography. Berlin:Springer-Verlag, 2011:388-409.
[9] JIA Ke-ting, DESMEDT Y, HAN Li-dong, et al. Pseudo-cryptanalysis of Luffa [R/OB] . (2009-05-19). http://eprint. iacr. org/2009/224.
[10] PRENEEL B, YOSHIDA H, WATANABE D. Finding collisions for reduced Luffa-256 v2[C] //Proc of the 16th Australasian Conference on Information Security and Privacy. 2011:423-427.
[11] AUMASSON J P, MEIER W. Zero-sum distinguishers for reduced Keccak-f and for the core functions of Luffa and Hamsi[EB/OL] . (2009-09-09). http://131002. net/data/papers/AM09. pdf.
[12] KIRCANSKI A, YOUSSEF A M. Boomerang and slide-rotational analysis of the SM3 hash function [R/OB] . (2012-05-15). http://eprint. iacr. org/2012/274.
收稿日期
修回日期
页码 3807-3809,3869
中图分类号 TP309
文献标志码 A