《计算机应用研究》|Application Research of Computers

基于稀疏表示的OFDM信号的DOA估计

DOA estimation of OFDM signal based on sparse representation

免费全文下载 (已被下载 次)  
获取PDF全文
作者 王志朝,张天骐,万义龙,朱洪波
机构 重庆邮电大学 信号与信息处理重庆市重点实验室,重庆 400065
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2013)12-3716-04
DOI 10.3969/j.issn.1001-3695.2013.12.051
摘要 针对正交频分复用(OFDM), 宽带信号波达方向(DOA)估计问题, 提出一种基于宽带信号协方差矩阵稀疏表示的DOA估计方法。该方法是在协方差矩阵主对角线下对左下角三角形元素按各条对角线取平均值后形成一个新的向量, 然后将该向量写成冗余字典形式。在冗余字典下对信号进行稀疏性约束形成二阶锥约束优化问题, 再用工具箱SeDuMi来实现DOA估计。理论分析和仿真结果表明, 该方法在低信噪比和少快拍数下分辨率很高, 是一种有效的宽带信号DOA估计算法, 此方法优于基于高阶累积量算法和宽带聚焦算法的DOA估计方法。
关键词 正交频分复用信号;稀疏表示;冗余字典;二阶锥约束优化;DOA估计
基金项目 国家自然科学基金资助项目(61071196,61102131)
国家教育部新世纪优秀人才支持计划项目(NCET-10-0927)
信号与信息处理重庆市市级重点实验室建设项目(CSTC2009CA2003)
重庆市杰出青年基金资助项目(CSTC2011jjjq40002)
重庆市自然科学基金资助项目(CSTC2010BB2398,CSTC2010BB2409,CSTC2010BB2411,CSTC2012JJA40008)
重庆市教育委员会科研项目(KJ120525)
本文URL http://www.arocmag.com/article/01-2013-12-051.html
英文标题 DOA estimation of OFDM signal based on sparse representation
作者英文名 WANG Zhi-chao, ZHANG Tian-qi, WAN Yi-long, ZHU Hong-bo
机构英文名 Chongqing Key Laboratory of Signal & Information Processing, Chongqing University of Posts & Telecommunications, Chongqing, 400065, China
英文摘要 In order to solve the problem of the OFDM broadband signal processing, this paper introduced a algorithm for the direction of arrival (DOA) estimation of OFDM signal based on the wideband signal covariance matrix sparse representation. It averaged the triangle elements in the lower left corner of the main diagonal of the covariance matrix to form a new vector, and wrote the vector in the form of a redundant dictionary. The signal in a redundant dictionary the sparsity constraints formed a second-order cone constrained optimization problems, and then used toolbox SeDuMi to do DOA estimation. Theoretical analysis and simulation results show that the proposed method is an effective wideband signal DOA estimation algorithm and has high resolution in low signal-to-noise ratio and less number of snapshots, it is better than higher order cumulant algorithm and wideband focused matrix algorithm DOA estimation method.
英文关键词 orthogonal frequency division multiplexing(OFDM) signal; sparse representation; redundant dictionary; second-order cone constrained optimization; direction of arrival(DOA) estimation
参考文献 查看稿件参考文献
  [1] 王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M] . 北京:清华大学出版社, 2004:253-301.
[2] 赵拥军, 周林. 宽带相干源波达方向估计的新方法及性能分析[J] . 电子测量与仪器学报, 2007, 21(6):54-57.
[3] ALLAN M, MOGHADDAMJOO A. Twe-dimensional DFT projection for wideband direction-of-arrival estimation[J] . IEEE Trans on Signal Processing, 1995, 43(7):1728-1732.
[4] WANG H, KAVEH M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wideband source[J] . IEEE Trans on Acoustics, Speech, Signal, Proces-sing, 1985, 33(4):823-831.
[5] ZENG Wen-jun, LI Xi-lin, ZHANG Xian-da. Direction-of-arrival estimation based on the joint diagonalization structure of multiple fourth-order cumulant matrices[J] . IEEE Signal Processing Letters, 2009, 16(3):164-167.
[6] SCHMIDT R O. Multiple emitter location and signal parameter estimation[J] . IEEE Trans on Antennas and Propagation, 1986, 34(3):276-280.
[7] DMITRY M, MUJDAT C, ALAN S W. A sparse signal reconstruction perspective for source localization with sensor arrays[J] . IEEE Trans on Signal Processing, 2005, 53(8):3010-3022.
[8] GUO Xian-sheng, WAN Qun, CHANG Chun-qi, et al. Sourcelocalization using a sparse representation framework to achieve superresolution[J] . Multidimensional Systems and Signal Processing, 2010, 21(4):391-402.
[9] HYDER M M, MAHATA K. Direction-of-arrival estimation using a mixed L2, 0 norm approximation[J] . IEEE Trans on Signal Processing, 2010, 58(9):4646-4655.
[10] 冯莹莹, 程向阳, 邓明. 基于稀疏表示的信号DOA估计[J] . 计算机应用研究, 2013, 30(2):537-540.
[11] LIU Zhang-meng, HUANG Zhi-tao, ZHOU Yi-yu. Directiong-of-arrival estimation of wideband signals via covariance matrix sparse representation[J] . IEEE Trans on Signal Processing, 2011, 59(9):4256-4270.
[12] CHEN S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit[J] . SIAM Journal on Scientific Computing, 2001, 43(1):129-159.
收稿日期
修回日期
页码 3716-3719
中图分类号 TN911.23
文献标志码 A