《计算机应用研究》|Application Research of Computers

多样性保持的和声搜索算法及其TSP求解

Diversity maintaining harmony search algorithm and its TSP solution

免费全文下载 (已被下载 次)  
获取PDF全文
作者 黄鉴,彭其渊
机构 西南交通大学 交通运输与物流学院,成都 610031
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2013)12-3583-03
DOI 10.3969/j.issn.1001-3695.2013.12.016
摘要 为了改善和声记忆库群体多样性, 提高算法的全局寻优能力, 在度量群体多样性指标的基础上, 从参数动态调整方法、和声记忆库更新策略两个方面对基本和声搜索算法进行了改进, 提出了多样性保持的和声搜索算法, 并将该算法应用于TSP的求解。结合TSP问题特点, 设计了基于交换和插入算子的和声微调方法。实例优化结果表明, 改进后的算法不容易陷入局部最优, 优化性能显著提高。
关键词 和声搜索;遗传算法;群体多样性;旅行商问题
基金项目
本文URL http://www.arocmag.com/article/01-2013-12-016.html
英文标题 Diversity maintaining harmony search algorithm and its TSP solution
作者英文名 HUANG Jian, PENG Qi-yuan
机构英文名 School of Transportation & Logistics, Southwest Jiaotong University, Chengdu 610031, China
英文摘要 In order to improve population diversity of harmony memory and global optimization ability of harmony search algorithm, this paper proposed a diversity maintaining harmony search algorithm, which improved from two aspects based on the index of population diversity. The one was the method of parameters dynamical adjustment, and the other one was updating strategy of harmony memory. Then TSP was solved by the algorithm. Considering the characteristic of the problem, it designed the method of harmony adjusting based on exchange and insertion operator. The example optimization results show that the proposed algorithm can't easily get into local optimal solution and has obvious better performance.
英文关键词 harmony search(HS); genetic algorithm; population diversity; TSP(traveling salesman problem)
参考文献 查看稿件参考文献
  [1] GEEM Z W, KIM J H, LOGANATHAN G V. A new heuristic optimization algorithm:harmony search[J] . Simulation, 2001, 76(2):60-68.
[2] 韩红燕, 潘全科, 染静. 改进的和声搜索算法在函数优化中的应用[J] . 计算机工程, 2010, 36(13):245-247.
[3] 常虹, 焦斌, 顾幸生. 自适应和声搜索算法及在数值优化中的应用[J] . 控制工程, 2012, 19(3):455-458.
[4] 金永强, 苏怀智, 李子阳. 基于和声搜索的边坡稳定性投影寻踪聚类分析[J] . 水利学报, 2007(S1):682-686.
[5] 李亮, 迟世春, 林皋. 改进和声搜索算法及其在土坡稳定分析中的应用[J] . 土木工程学报, 2006, 39(5):107-111.
[6] 张风荣, 潘全科, 庞荣波, 等. 基于和声退火算法的多维函数优化[J] . 计算机应用研究, 2010, 27(3):853-855, 859.
[7] GEEM Z W, KIMJ H, LOGANA T G V. Harmony search optimization:application to pipe network design[J] . International Journal of Model Simulation, 2002, 22(2):125-133.
[8] KIM J H, GEEM Z W, KIM E S. Parameter estimation of the nonli-near muskingum model using harmony search[J] . Journal of the American Water Resources Association, 2001, 37(5):1131-1138.
[9] GEEM Z W, LEE K S, PARK Y. Application of harmony search to vehicle routing[J] . American Journal of Applied Sciences, 2005, 2(12):1552-1557.
[10] LEE K S, GEEM Z W. A new meta-heuristic algorithm for continuous engineering optimization:harmony search theory and practice[J] . Computer Methods in Applied Mechanics and Engineering, 2005, 194(36-38):3902-3933.
[11] GEEM Z W. Optimal cost design of water distribution networks using harmony search[J] . Engineering Optimization, 2006, 38(3):259-280.
[12] MAHDAVI M, FESANGHARY M, DAMANGIR E. An improved harmony search algorithm for solving optimization problems[J] . Applied Mathematics and Computation, 2007, 188(2):1567-1579.
[13] MAHDAV I M. Global-best harmony search[J] . Applied Mathema-tics and Computation, 2008, 198(2):643-656.
[14] FESANGHARYA M, MAHDAVIB M, JOLANDANC M M, et al. Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems[J] . Computer Methods in Applied Mechanics and Engineering, 2008, 197(33-40):3080-3091.
[15] 李军华, 黎明, 袁丽华. 遗传算法求解TSP的种群多样性研究[J] . 小型微型计算机系统, 2008, 29(3):544-547.
[16] 王玉亭, 孙剑, 李俊青, 等. 顺序表示编码的和声退火混合算法求解TSP[J] . 微电子学与计算机, 2010, 27(10):41-49.
[17] 王凌. 智能优化算法及其应用[M] . 北京:清华大学出版社, 2001:193-195.
收稿日期
修回日期
页码 3583-3585
中图分类号 TP301.6
文献标志码 A