《计算机应用研究》|Application Research of Computers

点云模型适应性上采样算法

Adaptive up-sampling algorithm of point cloud model

免费全文下载 (已被下载 次)  
获取PDF全文
作者 杨斌,范媛媛
机构 滁州学院 a.计算机与信息工程学院;b.数学科学学院,安徽 滁州 239012
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2012)06-2354-03
DOI 10.3969/j.issn.1001-3695.2012.06.094
摘要 针对点云模型采样密度的不足, 提出一种新的适应性上采样算法。算法首先采用均匀栅格法建立点云模型的拓扑关系, 提高数据点K-邻域的查找效率, 利用协方差矩阵求取点云模型中数据点的法向量, 并用法向传播算法进行法向重定向, 然后检测点云模型中采样点密度不足的区域, 在采样密度不足区域的点的切向矩形平面内适应性均匀采样, 并把这些采样点几乎垂直投影到点云模型所在的原始曲面上, 由此得到的模型即为上采样模型。该算法得到的上采样模型可以较好地补充点云模型的细节信息, 能够满足点云模型的绘制和后续几何处理的需求。
关键词 点云模型;均匀栅格;协方差矩阵;投影;上采样
基金项目 国家自然科学基金资助项目(60873175)
安徽省教育厅自然科学基金资助项目(KJ2011Z284)
本文URL http://www.arocmag.com/article/01-2012-06-094.html
英文标题 Adaptive up-sampling algorithm of point cloud model
作者英文名 YANG Bin, FAN Yuan-yuan
机构英文名 a. Institute of Computer & Information Engineering, b. Institute of Mathematical Sciences, Chuzhou University, Chuzhou Anhui 239012, China
英文摘要 For insufficient sampling density of point cloud model, this paper proposed a new adaptive up-sampling algorithm. Firstly, it used uniform grids method to represent the spatial topology relationship of point cloud in order to improve the efficiency of finding the K-nearest neighbors for each data point, and estimated normal vectors of data points by constructing covariance matrix, and computed a consistent orientation of the normal vectors using normal propagation algorithm. Then, it detected these regions with insufficient sampling density dynamically, and adaptive resampled points uniformly in the tangent plane of bounding rectangle originated at this point of insufficient sampling density, and the re-samples were projected onto the underlying surface of point cloud model to achieve the final up-sampling result using the almost orthogonal projection. The up-sampling models could preferably supplement these little detail information of point cloud, and satisfy the needs of rendering point cloud model and subsequent geometric processing.
英文关键词 point cloud model; uniform grids; covariance matrix; projection; up-sampling
参考文献 查看稿件参考文献
 
收稿日期
修回日期
页码 2354-2356
中图分类号 TP391.41
文献标志码 A