根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

考虑订单拆分策略的AGV拣选效率优化方法

Optimization method of AGV picking efficiency considering order splitting strategy
张艳菊a,b,c
杨庆港a
吴俊a
吴一玄a
李雨扬a
辽宁工程技术大学 a. 工商管理学院; b. 管理科学与工程研究院; c. 现代企业制度创新研究中心, 辽宁 葫芦岛 125105

摘要

为提高智能仓库系统中AGV的拣选效率,针对AGV订单拣选优化问题分为AGV-货架任务分配、多AGV无冲突路径规划两个子问题进行研究,根据订单特点引入订单拆分策略,并以最小化AGV完成所有订单的总时间为目标构建数学模型。首先,设计了确定货架优先级的AGV-货架任务分配算法(AGV-Shelf Task Allocation Algorithm,ASTA)求解匹配问题。然后,提出一种带有贪婪参数并嵌入冲突消解策略的改进Q-Learning算法,得到拆分策略下最优无冲突拣选路径方案。最后,通过在40m×40m仓库布局中订单集数值实验对比分析,所提算法与现有的两种算法对比结果显示,AGV完成所有订单的总时间分别平均减少11.63%和26.74%,验证了拆分策略的有效性。并且通过AGV使用数量、完成订单时间和路径冲突等待时间占比三个指标的对比验证了拆分策略和所提算法能有效缓解拥堵情况,减少行驶路径长度,提高拣选效率。此外,针对AGV数量灵敏度分析,在不同数量的AGV对行驶时间和路径冲突等待时间的影响,发现19台AGV数量是最佳配置,验证了模型的可行性和算法的有效性。

基金项目

辽宁省社会科学规划基金资助项目(L22BJY034)

出版信息

DOI: 10.19734/j.issn.1001-3695.2024.04.0081
出版期卷: 《计算机应用研究》 优先出版, 2024年第41卷 第11期

发布历史

[2024-07-30] 优先出版

引用本文

张艳菊, 杨庆港, 吴俊, 等. 考虑订单拆分策略的AGV拣选效率优化方法 [J]. 计算机应用研究, 2024, 41 (11). (2024-09-11). https://doi.org/10.19734/j.issn.1001-3695.2024.04.0081. (Zhang Yanju, Yang Qinggang, Wu Jun, et al. Optimization method of AGV picking efficiency considering order splitting strategy [J]. Application Research of Computers, 2024, 41 (11). (2024-09-11). https://doi.org/10.19734/j.issn.1001-3695.2024.04.0081. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊