根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

AGCFN:基于图神经网络多层网络社团检测模型

AGCFN: multiplex network community detection model based on graph neural network
陈龙1a
张振宇1b
李晓明2
白宏鹏3
1. 新疆大学 a. 软件学院; b. 信息科学与工程学院, 乌鲁木齐 830000
2. 浙江越秀外国语学院, 浙江 绍兴 312000
3. 天津大学 智能与计算学院, 天津 300000

摘要

基于图神经网络的多层网络社团检测方法面临以下两个挑战。一是如何有效利用多层网络的节点内容信息,二是如何有效利用多层网络的层间关系。因此,提出多层网络社团检测模型AGCFN(autoencoderenhanced graph convolutional fusion network)。首先通过自编码器独立提取每个网络层的节点内容信息,通过传递算子将提取到的节点内容信息传递给图自编码器进行当前网络层节点内容信息与拓扑结构信息的融合,从而得到当前网络层每个节点的表示,这种方法充分利用了网络的节点内容信息与拓扑结构信息。对于得到的节点表示,通过模块度最大化模块和图解码器对其进行优化。其次,通过多层信息融合模块将每个网络层提取到的节点表示进行融合,得到每个节点的综合表示。最后,通过自训练机制训练模型并得到社团检测结果。与6个模型在三个数据集上进行对比,ACC与NMI评价指标有所提升,验证了AGCFN的有效性。

基金项目

国家自然科学基金资助项目(62272311)
国家重点研发计划资助项目(2018YFC0831005)
中国天津经济技术开发区科技支撑计划资助项目(STCKJ2020-WRJ)
中国新疆建设兵团第十二师财务科技项目(SR202103)

出版信息

DOI: 10.19734/j.issn.1001-3695.2024.03.0056
出版期卷: 《计算机应用研究》 印刷出版, 2024年第41卷 第10期
所属栏目: 图神经网络专题
出版页码: 2926-2931
文章编号: 1001-3695(2024)10-007-2926-06

发布历史

[2024-07-05] 优先出版
[2024-10-05] 印刷出版

引用本文

陈龙, 张振宇, 李晓明, 等. AGCFN:基于图神经网络多层网络社团检测模型 [J]. 计算机应用研究, 2024, 41 (10): 2926-2931. (Chen Long, Zhang Zhenyu, Li Xiaoming, et al. AGCFN: multiplex network community detection model based on graph neural network [J]. Application Research of Computers, 2024, 41 (10): 2926-2931. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊