面向车联网的联邦学习模型定制框架及算法改进
Customized federated learning model framework and algorithm enhancements for vehicular networks
1. 北京信息科技大学 理学院, 北京 100192
2. 中国科学院软件研究所 可信计算与信息保障实验室, 北京 100190
摘要
针对车联网联邦学习服务难以满足用户训练个性化模型的需求,提出一种创新性的车联网联邦学习模型定制化服务框架。该框架采用了一种融合设备贡献度和数据集相似性的联邦学习聚合算法,实现了个性化联邦学习。该算法通过不同权重分配方式和相似性计算,使得不同用户可以根据自己的需求和数据特征,选择合适的模型训练方案。该框架还提出了一种双重抽样验证方法,解决了模型性能和可信度问题;此外,利用智能合约支持数据协作,保障了数据的安全性。实验结果表明,提出算法在大多数实验场景中表现出较高的准确率,该框架可以显著提高车联网服务的个性化水平,同时保证模型的准确性和可靠性。
基金项目
国家自然科学基金资助项目(61872343)
未来区块链与隐私计算高精尖中心资助项目(202203)
出版信息
DOI: 10.19734/j.issn.1001-3695.2023.09.0416
出版期卷: 《计算机应用研究》 印刷出版, 2024年第41卷 第5期
所属栏目: 智能交通专题
出版页码: 1328-1337
文章编号: 1001-3695(2024)05-007-1328-10
发布历史
[2023-11-29] 优先出版
[2024-05-05] 印刷出版
引用本文
李翰奇, 王小妮, 吴秋新, 等. 面向车联网的联邦学习模型定制框架及算法改进 [J]. 计算机应用研究, 2024, 41 (5): 1328-1337. (Li Hanqi, Wang Xiaoni, Wu Qiuxin, et al. Customized federated learning model framework and algorithm enhancements for vehicular networks [J]. Application Research of Computers, 2024, 41 (5): 1328-1337. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊