3D UNeXt:轻量级快速脑提取网络

3D UNeXt: lightweight and efficient network for effective brain extraction
申华磊1,2,3
王琦1
上官国庆1
刘栋1,2,3
1. 河南师范大学 计算机与信息工程学院, 河南 新乡 453007
2. 河南省教育人工智能与个性化学习重点实验室, 河南 新乡 453007
3. 教学资源与教育质量评估大数据河南省工程实验室, 河南 新乡 453007

摘要

为了解决现有脑提取网络结构复杂、参数量大且推理速度不高的问题,受UNeXt启发,提出一种基于3D卷积、3D多层感知机(multilayer perception,MLP)和多尺度特征融合的轻量级快速脑提取网络3D UNeXt,极大地减少了参数和浮点运算量,取得了令人满意的结果。3D UNeXt以U-Net为基本架构,在编码阶段使用3D卷积模块获取局部特征;在瓶颈阶段通过3D MLP模块获取全局特征和特征之间的远程依赖;在解码阶段借助多尺度特征融合模块高效融合浅层特征和深层特征。特别地,3D MLP模块在三个不同特征轴向进行线性移位操作,以获取不同维度特征的全局感受野并建立它们之间的远程依赖。在IBSR、NFBS和HTU-BrainMask三个数据集上进行实验,以和先进网络进行对比。实验结果表明,3D UNeXt在网络参数、浮点运算量、推理精度和速度等方面显著优于现有模型。

基金项目

国家自然科学基金项目(62072160)
河南省科技攻关项目(232102211024)

出版信息

DOI: 10.19734/j.issn.1001-3695.2023.09.0405
出版期卷: 《计算机应用研究》 印刷出版, 2024年第41卷 第6期
所属栏目: 图形图像技术
出版页码: 1876-1881
文章编号: 1001-3695(2024)06-040-1876-06

发布历史

[2024-02-01] 优先出版
[2024-06-05] 印刷出版

引用本文

申华磊, 王琦, 上官国庆, 等. 3D UNeXt:轻量级快速脑提取网络 [J]. 计算机应用研究, 2024, 41 (6): 1876-1881. (Shen Hualei, Wang Qi, Shangguan Guoqing, et al. 3D UNeXt: lightweight and efficient network for effective brain extraction [J]. Application Research of Computers, 2024, 41 (6): 1876-1881. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊