融合背景上下文特征的视觉情感识别与预测方法

Visual emotion recognition and prediction based on fusion of background contextual features
冯月华1,2
魏若岩1,2
朱晓庆3
1. 河北经贸大学 管理科学与信息工程学院, 石家庄 050061
2. 河北省跨境电商技术创新中心, 石家庄 050061
3. 北京工业大学 信息学部, 北京 100124

摘要

为解决基于视觉的情感识别无法捕捉人物所处环境和与周围人物互动对情感识别的影响、单一情感种类无法更丰富地描述人物情感、无法对未来情感进行合理预测的问题,提出了融合背景上下文特征的视觉情感识别与预测方法。该方法由融合背景上下文特征的情感识别模型(Context-ER)和基于GRU与Valence-Arousal连续情感维度的情感预测模型(GRU-mapVA)组成。Context-ER同时综合了面部表情、身体姿态和背景上下文(所处环境、与周围人物互动行为)特征,进行26种离散情感类别的多标签分类和3个连续情感维度的回归。GRU-mapVA根据所提映射规则,将Valence-Arousal的预测值投影到改进的Valence-Arousal模型上,使得情感预测类间差异更为明显。Context-ER在Emotic数据集上进行了测试,结果表明识别情感的平均精确率比现有方法提高4%以上;GRU-mapVA在三段视频样本上进行了测试,结果表明情感预测效果相较于现有方法有很大提升。

基金项目

国家自然科学基金资助项目(62103009)
河北省重点研发计划资助项目(17216108)
河北省自然基金资助项目(F2018207038)
河北省高等教育教学改革研究与实践项目(2022GJJG178)
河北省教育厅科研资助项目(QN2020186)
河北经贸大学重点研究项目(ZD20230001)

出版信息

DOI: 10.19734/j.issn.1001-3695.2023.08.0388
出版期卷: 《计算机应用研究》 印刷出版, 2024年第41卷 第5期
所属栏目: 图形图像技术
出版页码: 1585-1593
文章编号: 1001-3695(2024)05-043-1585-09

发布历史

[2023-11-02] 优先出版
[2024-05-05] 印刷出版

引用本文

冯月华, 魏若岩, 朱晓庆. 融合背景上下文特征的视觉情感识别与预测方法 [J]. 计算机应用研究, 2024, 41 (5): 1585-1593. (Feng Yuehua, Wei Ruoyan, Zhu Xiaoqing. Visual emotion recognition and prediction based on fusion of background contextual features [J]. Application Research of Computers, 2024, 41 (5): 1585-1593. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊