Traffic flow prediction model based on combining periodic graph convolution networks and multi-head attention GRU

Traffic flow prediction model based on combining periodic graph convolution networks and multi-head attention GRU
Zhong Linlan1
Zhang Anqin1,2
Tian Xiuxia1
1. School of Computer Science & Technology, Shanghai University of Electric Power, Shanghai 201306, China
2. Institute of Local Government Development, Shantou University, Shantou Guangdong 515063, China

摘要

To capture the complex spatial-temporal dynamics and periodic patterns in traffic flow data, and reduce the cumulative error effects caused by unexpected road conditions, this paper proposed a traffic flow prediction model based on Combining Periodic Graph Convolutional Networks (PGCN) and Multi-Head Attention Gated Recurrent Unit (MAGRU) . Firstly, the spatial-temporal data fusion module constructed periodic graphs using the property of periodic similarity in traffic flow data, and added spatial and temporal encoding information into the sequence data. Then, in the spatial-temporal feature extraction module, graph convolutional networks(GCN) submodule captured spatial features from the periodic feature graphs, MAGRU submodule captured temporal features from the sequence data. Finally, the gated fusion mechanism fused the features extracted by both modules. The experiment was conducted on two real traffic flow datasets, the results indicated that compared to several recent baseline models, the model achieved average reduction of 5.4%, 22.8%, 10.3% in MAE, RMSE and MAPE, exhibited an average improvement of 11.6% in R2 accuracy metric. Confirms that the model can provide more accurate predictions and reduce cumulative error effects.

基金项目

广东省人文社会科学重点研究基地——汕头大学地方政府发展研究所开放基金课题(07422002)

出版信息

DOI: 10.19734/j.issn.1001-3695.2023.08.0362
出版期卷: 《计算机应用研究》 Accepted Paper, 2024年第41卷 第4期

发布历史

[2023-11-02] Accepted Paper

引用本文

钟林岚, 张安勤, 田秀霞. 基于周期图卷积与多头注意力GRU组合的交通流量预测模型 [J]. 计算机应用研究, 2024, 41 (4). (2023-12-13). https://doi.org/10.19734/j.issn.1001-3695.2023.08.0362. (Zhong Linlan, Zhang Anqin, Tian Xiuxia. Traffic flow prediction model based on combining periodic graph convolution networks and multi-head attention GRU [J]. Application Research of Computers, 2024, 41 (4). (2023-12-13). https://doi.org/10.19734/j.issn.1001-3695.2023.08.0362. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊