基于深度编码注意力的XLNet-Transformer汉-马低资源神经机器翻译优化方法
XLNet-Transformer optimization method for Chinese-Malay low-resource neural machine translation based on deep coded attention
江西科技学院 a. 信息工程学院; b. 协同创新中心大数据实验室, 南昌 330098
摘要
神经机器翻译(NMT)在多个领域应用中已取得显著成效,在大规模语料库上已充分论证其优越性。然而,在语料库资源不足的情形下,仍存在较大的改进空间。由于汉语-马来语(汉-马)平行语料的匮乏,直接导致了汉-马机器翻译的翻译效果不佳。为解决汉-马低资源机器翻译不理想的问题,提出了一种基于深度编码注意力和渐进式解冻的低资源神经机器翻译方法。首先,利用XLNet预训练模型重构编码器,在编码器中使用了XLNet动态聚合模块替代了传统编码层的输出方式,有效弥补了低资源汉-马语料匮乏的瓶颈;其次,在解码器中使用并行交叉注意力模块对传统编码-解码注意力进行了改进,提升了源词和目标词的潜在关系的捕获能力;最后,对提出模型采用渐进式解冻训练策略,最大化释放了模型的性能。实验结果表明,提出方法在小规模的汉-马数据集上得到了显著的性能提升,验证了方法的有效性,对比其他的低资源NMT方法,所提方法结构更为精简,并改进了编码器和解码器,翻译效果提升更加显著,为应对低资源机器翻译提供了有效的策略与启示。
基金项目
江西省教育厅科学技术研究资助项目(GJJ2202613,GJJ212015)
出版信息
DOI: 10.19734/j.issn.1001-3695.2023.08.0331
出版期卷: 《计算机应用研究》 印刷出版, 2024年第41卷 第3期
所属栏目: 算法研究探讨
出版页码: 799-804,810
文章编号: 1001-3695(2024)03-022-0799-06
发布历史
[2023-10-12] 优先出版
[2024-03-05] 印刷出版
引用本文
占思琦, 徐志展, 杨威, 等. 基于深度编码注意力的XLNet-Transformer汉-马低资源神经机器翻译优化方法 [J]. 计算机应用研究, 2024, 41 (3): 799-804,810. (Zhan Siqi, Xu Zhizhan, Yang Wei, et al. XLNet-Transformer optimization method for Chinese-Malay low-resource neural machine translation based on deep coded attention [J]. Application Research of Computers, 2024, 41 (3): 799-804,810. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊