融合时空图卷积网络与非自回归模型的三维人体运动预测

Three-dimensional human motion prediction combining spatiotemporal graph convolutional networks and non-autoregressive models
刘一松
高含露
蔡凯祥
江苏大学 计算机科学与通信工程学院, 江苏 镇江 212013

摘要

当前人体运动预测的方法大多采用基于图卷积网络的自回归模型,没有充分考虑关节间的特有关系和自回归网络性能的限制,从而产生平均姿态和误差累积等问题。为解决以上问题,提出融合时空图卷积网络和非自回归的模型对人体运动进行预测。一方面利用时空图卷积的网络提取人体运动序列的局部特征,可以有效减少三维人体运动预测场景中的平均姿态问题和过度堆叠图卷积层引起的过平滑问题的发生;另一方面将非自回归模型与时空图卷积网络进行结合,减少误差累计问题的发生。利用Human3.6M的数据集进行80 ms、160 ms、320 ms和400 ms的人体运动预测实验。结果表明,NAS-GCN模型与现有方法相比,能预测出更精确的结果。

基金项目

江苏省自然科学基金资助项目(BK20220515)

出版信息

DOI: 10.19734/j.issn.1001-3695.2023.07.0323
出版期卷: 《计算机应用研究》 印刷出版, 2024年第41卷 第3期
所属栏目: 图形图像技术
出版页码: 956-960
文章编号: 1001-3695(2024)03-048-0956-05

发布历史

[2023-09-20] 优先出版
[2024-03-05] 印刷出版

引用本文

刘一松, 高含露, 蔡凯祥. 融合时空图卷积网络与非自回归模型的三维人体运动预测 [J]. 计算机应用研究, 2024, 41 (3): 956-960. (Liu Yisong, Gao Hanlu, Cai Kaixiang. Three-dimensional human motion prediction combining spatiotemporal graph convolutional networks and non-autoregressive models [J]. Application Research of Computers, 2024, 41 (3): 956-960. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊