Survey of online ensemble classification algorithms for complex data streams

Survey of online ensemble classification algorithms for complex data streams
Li Chunpeng
Han Meng
Meng Fanxing
He Feifei
Zhang Ruihua
School of Computer Science & Engineering, North Minzu University, Yinchuan 750021, China

摘要

The concept drift and imbalance problems in complex data streams reduced the performance of classifiers. Traditional batch learning algorithms need to consider factors such as memory and runtime, but their performance is not outstanding in rapidly arriving massive data streams, and they also contain a large number of drift and class imbalance phenomena. Utilizing online ensemble algorithms to handle complex data stream problems has become an important research topic in the field of data mining. Firstly, this paper introduced and summarized the online versions of bagging, boosting, and stacking ensemble methods from the perspective of ensemble strategies, and compared the performance of different models. Secondly, this paper conducted a detailed summary and analysis of online ensemble classification algorithms for complex data streams for the first time. This paper introduced conceptual drift data stream detection and classification algorithms from two aspects: active detection and passive adaptation. This paper introduced unbalanced data streams from two aspects: data preprocessing and cost sensitivity. This paper analyzed the spatiotemporal efficiency of representative algorithms, and then we compared the performance of algorithms using the same dataset. Finally, this paper proposed the next research direction in response to the challenges in the field of online ensemble classification of complex data streams.

基金项目

国家自然科学基金资助项目(62062004)
宁夏自然科学基金项目资助项目(2022AAC03279)

出版信息

DOI: 10.19734/j.issn.1001-3695.2023.06.0291
出版期卷: 《计算机应用研究》 Accepted Paper, 2024年第41卷 第3期

发布历史

[2023-11-16] Accepted Paper

引用本文

李春鹏, 韩萌, 孟凡兴, 等. 复杂数据流在线集成分类算法综述 [J]. 计算机应用研究, 2024, 41 (3). (2023-12-13). https://doi.org/10.19734/j.issn.1001-3695.2023.06.0291. (Li Chunpeng, Han Meng, Meng Fanxing, et al. Survey of online ensemble classification algorithms for complex data streams [J]. Application Research of Computers, 2024, 41 (3). (2023-12-13). https://doi.org/10.19734/j.issn.1001-3695.2023.06.0291. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊