Technology of Graphic & Image
|
3834-3840,3847

MaskMix:mask mixing augmentation method for change detection

MaskMix:mask mixing augmentation method for change detection
Xing Yana
Wei Jiedab
Wang Ruofeib
Huang Ruib
a. School of Safety Science & Engineering, b. School of Computer Science & Technology, Civil Aviation University of China, Tianjin 300300, China

摘要

Data augmentation is a key technique to improve the generalizability of change detection models. Although the existing data augmentation methods achieve promising performance in image classification and object detection, they ignore the differences among the time-series images and the diversities of the changed objects. In order to preserve the change region and increase the information of the complex background, this paper proposed a novel data augmentation method for change detection based on change region mask, called MaskMix. Firstly, the change regions of the current image pair were pasted on an image pair to generate a new change image pair having new background and new changes. Secondly, MaskMix further augmented the image pair by multi-path weighted fusion strategy. It selected a classical image processing method randomly from an image processing set for each path to conduct further augmentation. And then the processed image pairs from K paths were fused using a K-dimensional weight generated by Dirichlet distribution. Finally, the pre-processed image pair and the post-processed image pair were fused by the weight generated by the Beta distribution through the skip connection. Experiments conducted on two publicly available datasets, e. g., BCD(build change detection) and LEVIR-CD(LEVIR building change detection dataset), demonstrate that MaskMix significantly improves the generalizability of change detectors, e. g., ADCDNet, BIT, ChangeFormer, SNUNet, and DSAMNet. Moreover, compared with the existing image augmentation methods, such as MixUp, AugMix, MUM, and CropMix, MaskMix effectively increases the complexity and diversity of change images, enhancing the generalizability of existing change detection methods.

基金项目

中央高校基本科研业务费项目中国民航大学专项资助项目(3122022091)
中国民航大学科研启动项目(2017QD15X,2017QD17X)

出版信息

DOI: 10.19734/j.issn.1001-3695.2023.06.0228
出版期卷: 《计算机应用研究》 Printed Article, 2023年第40卷 第12期
所属栏目: Technology of Graphic & Image
出版页码: 3834-3840,3847
文章编号: 1001-3695(2023)12-050-3834-07

发布历史

[2023-08-14] Accepted Paper
[2023-12-05] Printed Article

引用本文

邢艳, 魏接达, 汪若飞, 等. MaskMix:用于变化检测的掩码混合数据增强方法 [J]. 计算机应用研究, 2023, 40 (12): 3834-3840,3847. (Xing Yan, Wei Jieda, Wang Ruofei, et al. MaskMix:mask mixing augmentation method for change detection [J]. Application Research of Computers, 2023, 40 (12): 3834-3840,3847. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊