MaskMix:用于变化检测的掩码混合数据增强方法
MaskMix:mask mixing augmentation method for change detection
中国民航大学 a. 安全科学与工程学院; b. 计算机科学与技术学院, 天津 300300
摘要
数据增强是提升变化检测模型泛化能力的一种主要方法。尽管现有的数据增强方法在图像分类、目标检测中取得了较好的效果,但忽略了多个时间序列图像之间的差异和变化目标的多样性。为了较好地保留变化区域并且增加复杂的背景信息,基于变化区域掩码,提出一种适用于变化检测的数据增强方法:MaskMix。首先,将当前图像对的变化区域粘贴到一个图像对上,得到具有新的背景和新的变化的变化图像对。其次,采用多路径加权融合策略进一步增强变化图像对。在每条路径上,从图像处理集合中随机选取一种经典的图像处理方法进一步处理变化图像对,然后使用Dirichlet分布产生的K维权重将K条路径处理后的图像对进行融合。最后,通过跳跃连接将处理前的图像对和处理后的图像对按Beta分布产生权重,进行更深层次的混合。实验结果表明,提出的MaskMix在BCD和LEVIR-CD两个数据集上,有效地提升了变化检测方法ADCDNet、BIT、ChangeFormer、SNUNet和DSAMNet的泛化性能。与现有的图像增强方法MixUp、AugMix、MUM和CropMix相比,MaskMix能有效增加变化图像的复杂性和多样性,提升现有变化检测方法的泛化性能。
基金项目
中央高校基本科研业务费项目中国民航大学专项资助项目(3122022091)
中国民航大学科研启动项目(2017QD15X,2017QD17X)
出版信息
DOI: 10.19734/j.issn.1001-3695.2023.06.0228
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第12期
所属栏目: 图形图像技术
出版页码: 3834-3840,3847
文章编号: 1001-3695(2023)12-050-3834-07
发布历史
[2023-08-14] 优先出版
[2023-12-05] 印刷出版
引用本文
邢艳, 魏接达, 汪若飞, 等. MaskMix:用于变化检测的掩码混合数据增强方法 [J]. 计算机应用研究, 2023, 40 (12): 3834-3840,3847. (Xing Yan, Wei Jieda, Wang Ruofei, et al. MaskMix:mask mixing augmentation method for change detection [J]. Application Research of Computers, 2023, 40 (12): 3834-3840,3847. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊