基于特征尺度的平面波医学影像重建

Reconstruction of plane-wave medical image based on feature scale
杨翠云
侯钧译
曹怡亮
朱习军
闻卫军
青岛科技大学 信息科学技术学院, 山东 青岛 266061

摘要

相较于传统的线扫成像,平面波成像由于其超快的成像速度被广泛应用,但其成像质量较差,影响医生对肿瘤以及血管疾病的精确诊断,现有技术虽然可以提高成像质量,但会降低成像帧频,无法满足临床医学上超快成像的需求。针对上述问题,提出了一种基于生成对抗网络(generative adversarial network,GAN)的图像重建方法:MF-GAN(generative adversarial network with multiscales and feature extraction)。采用基于U-Net的生成器,在编码器中结合多尺度感受野提取不同层次的信息,在解码器中提出了叠加采样机制(fusion-sampling mechanism,FSM),并结合交叉自注意力(criss-cross self-attention,CCSA)分别提取局部和全局特征。在PICMUS 2016数据集上进行训练,利用组合损失规范该模型的收敛方向,相较主流基于深度学习和波束合成的方法,在点目标、囊肿目标和体内图像中的重建效果均有明显提升。综上所述,MF-GAN能够解决平面波图像病灶部位不清晰的问题,重建出高质量的平面波图像。

基金项目

山东省重点研发计划基金资助项目(2015GSF119016)
青岛市科技惠民示范专项资助项目(23-2-8-smjk-20-nsh)
山东省产教融合研究生联合培养示范基地项目(2020-19)

出版信息

DOI: 10.19734/j.issn.1001-3695.2023.06.0227
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第12期
所属栏目: 图形图像技术
出版页码: 3841-3847
文章编号: 1001-3695(2023)12-051-3841-07

发布历史

[2023-08-14] 优先出版
[2023-12-05] 印刷出版

引用本文

杨翠云, 侯钧译, 曹怡亮, 等. 基于特征尺度的平面波医学影像重建 [J]. 计算机应用研究, 2023, 40 (12): 3841-3847. (Yang Cuiyun, Hou Junyi, Cao Yiliang, et al. Reconstruction of plane-wave medical image based on feature scale [J]. Application Research of Computers, 2023, 40 (12): 3841-3847. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊