基于互信息和融合加权的并行深度森林算法

Parallel deep forest algorithm based on mutual information and mixed weighting
毛伊敏1,2
李文豪1
1. 江西理工大学 信息工程学院, 江西 赣州 341000
2. 韶关学院 信息工程学院, 广东 韶关 512000

摘要

针对大数据环境下并行深度森林算法中存在不相关及冗余特征过多、多粒度扫描不平衡、分类性能不足以及并行化效率低等问题,提出了基于互信息和融合加权的并行深度森林算法(parallel deep forest algorithm based on mutual information and mixed weighting,PDF-MIMW)。首先,在特征降维阶段提出了基于互信息的特征提取策略(feature extraction strategy based on mutual information,FE-MI),结合特征重要性、交互性和冗余性度量过滤原始特征,剔除过多的不相关和冗余特征;接着,在多粒度扫描阶段提出了基于填充的改进多粒度扫描策略(improved multi-granularity scanning strategy based on padding,IMGS-P),对精简后的特征进行填充并对窗口扫描后的子序列进行随机采样,保证多粒度扫描的平衡;其次,在级联森林构建阶段提出了并行子森林构建策略(sub-forest construction strategy based on mixed weighting,SFC-MW),结合Spark框架并行构建加权子森林,提升模型的分类性能;最后,在类向量合并阶段提出基于混合粒子群算法的负载均衡策略(load balancing strategy based on hybrid particle swarm optimization algorithm,LB-HPSO),优化Spark框架中任务节点的负载分配,降低类向量合并时的等待时长,提高模型的并行化效率。实验表明,PDF-MIMW算法的分类效果更佳,同时在大数据环境下的训练效率更高。

基金项目

广东省重点领域研发计划资助项目(2022B0101020002)
广东省重点提升项目(2022ZDJS048)

出版信息

DOI: 10.19734/j.issn.1001-3695.2023.05.0240
出版期卷: 《计算机应用研究》 印刷出版, 2024年第41卷 第2期
所属栏目: 算法研究探讨
出版页码: 473-481
文章编号: 1001-3695(2024)02-023-0473-09

发布历史

[2023-08-03] 优先出版
[2024-02-05] 印刷出版

引用本文

毛伊敏, 李文豪. 基于互信息和融合加权的并行深度森林算法 [J]. 计算机应用研究, 2024, 41 (2): 473-481. (Mao Yimin, Li Wenhao. Parallel deep forest algorithm based on mutual information and mixed weighting [J]. Application Research of Computers, 2024, 41 (2): 473-481. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊