深度学习在多核缓存预取中的应用研究综述

Review of deep learning-based multi-core cache prefetching research
张建勋
乔欣雨
林炳辉
天津职业技术师范大学 信息技术工程学院, 天津 300222

摘要

当前人工智能技术应用于系统结构领域的研究前景广阔,特别是将深度学习应用于多核架构的数据预取研究已经成为国内外的研究热点。针对基于深度学习的缓存预取任务进行了研究,形式化地定义了深度学习缓存预取模型。在介绍当前常见的多核缓存架构和预取技术的基础上,全面分析了现有基于深度学习的典型缓存预取器的设计思路。深度学习神经网络在多核缓存预取领域的应用主要采用了深度神经网络、循环神经网络、长短期记忆网络和注意力机制等机器学习方法,综合对比分析现有基于深度学习的数据预取神经网络模型后发现,基于深度学习的多核缓存预取技术在计算成本、模型优化和实用性等方面还存在着局限性,未来在自适应预取模型以及神经网络预取模型的实用性方面还有很大的研究探索空间和发展前景。

基金项目

中国高校产学研自然基金资助项目(2021FNA04016)

出版信息

DOI: 10.19734/j.issn.1001-3695.2023.05.0231
出版期卷: 《计算机应用研究》 印刷出版, 2024年第41卷 第2期
所属栏目: 综述评论
出版页码: 341-347
文章编号: 1001-3695(2024)02-003-0341-07

发布历史

[2023-10-07] 优先出版
[2024-02-05] 印刷出版

引用本文

张建勋, 乔欣雨, 林炳辉. 深度学习在多核缓存预取中的应用研究综述 [J]. 计算机应用研究, 2024, 41 (2): 341-347. (Zhang Jianxun, Qiao Xinyu, Lin Binghui. Review of deep learning-based multi-core cache prefetching research [J]. Application Research of Computers, 2024, 41 (2): 341-347. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊