局部几何与全局结构联合感知的三维形状分类方法

3D shape classification method based on joint graph convolution learning of local geometry and global structure
张晓辉1
何金海1
兰鹏燕1
徐圣斯2
1. 辽宁师范大学 计算机与信息技术学院, 辽宁 大连 116081
2. 大连工业大学 信息技术中心, 辽宁 大连 116034

摘要

针对复杂结构的三维形状分析与识别问题,提出了新颖的图卷积分类方法,建立了局部几何与全局结构联合图卷积学习机制,有效提高了三维形状数据学习的鲁棒性与稳定性。首先,通过最远点采样与最近邻方法构造局部图,并建立动态卷积算子,有效提取局部几何特征;同时,基于特征域采样构造全局的特征谱图,通过卷积算子获得全局结构信息。进而,构建加权的联合图卷积学习网络模型,引入注意力机制,实现自适应的特征融合。最终,在联合优化目标函数约束下,有效提高特征学习的性能。实验结果表明,融合局部几何与全局结构的联合图卷积网络学习机制,有效提高了深度特征的表示能力及区分性,具有更优秀的识别力和分类性能。该研究方法可应用于大规模三维场景识别、三维重建以及数据压缩,在机器人、产品数字化分析、智能导航、虚拟现实等领域具有着重要的工程意义与广泛的应用前景。

基金项目

辽宁省科技厅资助项目(2023JH2/101300190)
辽宁省教育厅一般项目(LJ2020015)

出版信息

DOI: 10.19734/j.issn.1001-3695.2023.04.0170
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第12期
所属栏目: 图形图像技术
出版页码: 3828-3833
文章编号: 1001-3695(2023)12-049-3828-06

发布历史

[2023-07-12] 优先出版
[2023-12-05] 印刷出版

引用本文

张晓辉, 何金海, 兰鹏燕, 等. 局部几何与全局结构联合感知的三维形状分类方法 [J]. 计算机应用研究, 2023, 40 (12): 3828-3833. (Zhang Xiaohui, He Jinhai, Lan Pengyan, et al. 3D shape classification method based on joint graph convolution learning of local geometry and global structure [J]. Application Research of Computers, 2023, 40 (12): 3828-3833. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊