灾害应急场景下基于多智能体深度强化学习的任务卸载策略

Multi-intelligence deep reinforcement learning-based task offloading strategy for disaster emergency scenarios
米德昌
王霄
李梦丽
秦俊康
贵州大学 电气工程学院, 贵阳 550025

摘要

针对传统深度强化学习(deep reinforcement learning,DRL)中收敛速度缓慢、经验重放组利用率低的问题,提出了灾害应急场景下基于多智能体深度强化学习(MADRL)的任务卸载策略。首先,针对MEC网络环境随时隙变化且当灾害发生时传感器数据多跳的问题,建立了灾害应急场景下基于MADRL的任务卸载模型;然后,针对传统DRL由高维动作空间导致的收敛缓慢问题,利用自适应差分进化算法(ADE)的变异和交叉操作探索动作空间,提出了自适应参数调整策略调整ADE的迭代次数,避免DRL在训练初期对动作空间的大量无用探索;最后,为进一步提高传统DRL经验重放组中的数据利用率,加入优先级经验重放技术,加速网络训练过程。仿真结果表明,ADE-DDPG算法相比改进的深度确定性策略梯度网络(deep deterministic policy gradient,DDPG)节约了35%的整体开销,验证了ADE-DDPG在性能上的有效性。

基金项目

国家自然科学基金资助项目(61861007,61640014)
贵州省科技计划资助项目(黔科合基础-ZK[2021]一般303)
贵州省科技支撑计划资助项目(科合支撑[2022]一般017,黔科合支撑[2023]一般096,黔科合支撑[2022]一般264)
贵州省教育厅创新群体项目(黔教合KY字[2021]012)
贵大引进人才项目(贵大人基合字(2014)08号)

出版信息

DOI: 10.19734/j.issn.1001-3695.2023.04.0159
出版期卷: 《计算机应用研究》 印刷出版, 2023年第40卷 第12期
所属栏目: 网络与通信技术
出版页码: 3766-3771,3777
文章编号: 1001-3695(2023)12-038-3766-06

发布历史

[2023-08-08] 优先出版
[2023-12-05] 印刷出版

引用本文

米德昌, 王霄, 李梦丽, 等. 灾害应急场景下基于多智能体深度强化学习的任务卸载策略 [J]. 计算机应用研究, 2023, 40 (12): 3766-3771,3777. (Mi Dechang, Wang Xiao, Li Mengli, et al. Multi-intelligence deep reinforcement learning-based task offloading strategy for disaster emergency scenarios [J]. Application Research of Computers, 2023, 40 (12): 3766-3771,3777. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊